

SCHOLASTIC APTITUDE TEST

(For Students of Class X)

Time: 90 Minutes

Max. Marks: 100 समय: 90 विनट

INSTRUCTIONS TO CANDIDATES

Read the following instructions carefully before you open the question booklet.

- Answers are to be given on a separate answer sheet.
- There are 100 questions in this test. All are compulsory. The question numbers 1 to 40 belong to Sciences, 41 to 60 pertain to Mathematics and 61 to 100 are on Social Science subjects.
- Please follow the instructions given on the answer sheet for marking the answers.
- Write your seven-digit Roll Number as allotted to you in the admission card very clearly on the testbooklet and darken the appropriate circles on the answer sheet as per instructions given.
- 5. Write down and darken Booklet Number in the appropriate circles on the answer sheet as per instructions given.
- Since the time allotted for this question paper is very limited and all questions carry equal marks, you should make the best use of it by not spending too much time on any one question.
- Rough work can be done anywhere in the booklet but not on the answer sheet/loose paper.
- 8. Every correct answer will be awarded one mark.
- THERE WILL BE A DEDUCTION OF 1/3 MARKS FOR EVERY WRONG ANSWER AND NO MARKS WILL BE DEDUCTED FOR UNATTEMPTED QUESTIONS.
- 10. Please return only the answer sheet to the invigilator after the test.
- 11. English version of the question paper will be considered as final in case of any dispute arising out of variation in translation.
 - Please turn over the page and start answering immediately after you are asked to do so.

रोल नम्बर Roll No. परितका संख्या Booklet Number

152553

श्रैक्षिक अभिक्षमता परीक्षा

(कशा X के विद्यार्थियों के लिए)

अधिकतम अंकः 100

परीक्षार्थियों के लिए अनुदेश

प्रश्न पुस्तिका खोलने से पहले, निम्न अनुदेशों को ध्यान से पहिए।

- टका एक अलग उत्तर-पत्रक में देने हैं।
- इस परीक्षा में 100 प्रस्त हैं। सभी प्रस्त अतिवार्व हैं। प्रस्त । से 40 विज्ञान, 41 में 60 पणित और 61 से 100 सामाजिक विज्ञान के विषयों पर आधारित है।
- क्रमण उत्तर चिवित करने के लिए उत्तर-पत्रक पर दिए गए अनुदेशों का अनुपालन कीतिए।
- कृपया अपना साज-अंकीय रोल नंबर, जैसा कि आपके प्रतेश यत्र पर दिया गया है, अनुदेशानुसार प्रश्न-पुरितका और उत्तर-पत्रक पर बहुत स्पष्ट रूप से लिखिए और दिए गए उच्युक्त गोलों को भारत स्टीनिए।
- कृपण उत्तर-चडक में उपयुक्त खाने में निर्देशानुसार चुस्तिका संख्या लिक्षिश
- क्वोंकि इस प्रश्न पत्र के शिए निर्धारित समय बद्धत घोषित है, इसलिए इसका अधिकतम उच्चोग कीविए और बिसी प्राप्त पर बहुत श्रमय न लयहर।
- रफ कार्य पुरितका में कहीं भी किया जा सकता है, किन्तु उत्तर-पत्रमा/अलग कागज पर नहीं।
- प्रत्येक सही उत्तर का एक अंक प्रदान किया जाएगा।
- प्रत्येक गलत उत्तर के लिए 1/3 अंक काटा जाएगा और किसी प्रश्न का उत्तर न देने पर उसके लिए कोई अंक नहीं काटा जाएगा।
- 10. कृषया परीक्षा के पत्रचार केवल उत्तर-पत्रक हो विशेक्षक को वापस कर शीजिए।
- अनुवरित विवरण में अंतर से उठे किसी भी विवार की विवित में, प्ररूप पत्र के अंग्रेजी विवरण को निर्माणक जना नाएगा।

कुषया पृष्ट पलटिए और अपना कार्य तुरना आरम्भ कीजिए

NCERT 2016

The copyright of the contents of this booklet rests with the NCERT and no part of it should be used by anybody in any manner whatsoever without the prior permission of the NCERT. The items are prepared with best expertise. In case of any dispute the opinion of the experts appointed by NCERT will be final.

NTSE STAGE_II SCHOLASTIC APTITUDE TEST (SAT)-2016

1.	Suppose a mutant of a perform	photosynthetic alga has c	dysfunctional mitochondr	ia. It would affect its ability to
	(1) glycolysis	(2) anaerobic respiration	(3) aerobic respiration	(4) photosynthesis
2.	Cow has a special stom (1) absorb food in better (3) assimilate food in a		of a lion in order to: (2) digest cellulose pres (4) absorb large amoun	
3.		way. The leaflets are closssure		eaflets starts from the point of
4.	Pancreas is composed (1) Only exocrine cells (3) Both endocrine and		(2) Only endocrine cell (4) Nephrons	
5.	The human embryo get (1) Zygote	s nutrition from the mothe (2) Ovary	er blood with the help of a (3) Oviduct	special organ called : (4) Placenta
6.	Hormones produced in (1) muscles	one part of the organism (2) bone	reach the distantly locate (3) cartilage	d target via : (4) blood
7.	(1) Actively dividing cell(2) Actively dividing cell(3) Actively dividing cell	are characteristic feature of swith dense cytoplasm the swith dense cytoplasm, the swith little cytoplasm, thing with thin cytoplasm, thing with thin cytoplasm, thing swith the swith swith	nick cell wall and promine hin cell wall and no vacu n cell wall and prominent	ent nuclei oles : nuclei
8.	Which one of the follow (1) Whale	ing animals is different fro (2) Water snake	om other in not having the (3) Star fish	paired gill pouches ? (4) Sea horse
9.	 (1) bacteria provide N₂ a (2) roots provide NH₄ an (3) bacteria provide NH₄ 	iship between a bacterium and the plant roots provide d bacteria provide Carbon and the roots provide Car and the roots provide NH ₄	Carbon	e:
10.	(1) Top level predators r(2) Increase in carbon d(3) The green-house eff	s an result of biological m may be harmed by toxic cl ioxide fect will be most significar th tropic level of a food ch	hemicals in environment.	
11.	(1) National parks and B(2) Wild animal in their r(3) Inhabitants of natura	natural habitats		
12.	(1) Sunlight is complete(2) Radiation fails to esc	n for increase in temperately absorbed by plants in the cape from the glass house unlight in a glass house this inside the glass house	the glass house	

13.	Match the items in colu Column-I A. Small pox B. Cholera C. Malaria D. Anaemia (1) A-IV, B-II, C-III, D-I (3) A-IV, B-III, C-II, D-I	mn-l with those in columi	n-II, and select the correct Column-II I. Bacteria II. Virus III. Deficiency of mineral IV. Female mosquito (2) A-II, B-I, C-IV, D-III (4) A-III, B-IV, C-I, D-II	
14.	plant were used. In the	ucted by Mendel, RRyy (r F ₂ generation 240 progen What were the characte (2) round and yellow	cy were produced, out of	inkled, yellow) seeds of pea which 15 progeny had (4) wrinkle and green
15.	Total number of neutror (1) 3.011 × 10 ²⁴	ns in five moles of water m (2) 2.409 × 10 ²⁵	nolecules is : (3) 3.111 × 10 ²⁵	(4) 2.711 × 10 ²⁵
16.	The metal used to recov (1) Na	ver copper from an aqueo (2) Ag	ous solution of copper sulp (3) Hg	phate is : (4) Fe
17.	of their properties give by I. Path of a beam of light II. On leaving undisturby III. The solute particles Which of the following it (1) A, B and D are collowing it is a solute particle.	pelow: Int passing throught it was ed, the particles of the suare visible to naked eye is correct about A,B,C and ids. C is a solution and D are colloids. C is nd D are solutions.	visible in A, B and D but ibstance settle down in A n A but invisible in B,C an d D ?	but not in B, C and D.
18.	Reason (R): Aluminium (1) Both A and R are co		al. son for A.	eriment.
19.	is to: (1) remove moisture cor (2) generate heat due to (3) remove magnesium	ndensed over the surface o exothermic reaction oxide formed over the sur	of ribbon. face of magnesium.	e reason of rubbing the ribbon
20.	(1) formation of calcium (2) formation of aluminic	ım from aluminium oxide carbonate from sodium h	-	
21.	An element X reacts wi be concluded that: I. X is an electropositive II. oxide of X is basic in III. oxide of X is acidic in IV. X is an electronegat (1) I, II, III	element. nature. nature.	with NaOH to produce s	alt and $H_2(g)$. Hence, it may $ (4) \ II, \ III, \ IV $

22. An element X has electronic configuration 2, 8, 1 and another element Y has electronic configuration 2, 8, 7. They form a compound Z. The property that is not exhibited by Z is (1) It has high melting point. (2) It is a good conductor of electricity in its pure solid state. (3) It breaks into pieces when beaten with hammer. (4) It is soluble in water 23. The compound containing both ionic and covalent bond is (1) AIBr_a (2) CaO (3) MgCl₂ (4) NH₄CI 24. The element that cannot be used as a reducing agent is (1) carbon (2) aluminium (3) sulphur (4) sodium 25. Somebody wanted to calculate the number of moles of oxygen atoms comprising of 9.033 × 10²³ number of its atoms. The person further thought to calculate its mass and to find the number of moles of hydrogen atoms required to combine completely with this amount of oxygen to form water. The number of moles of oxygen atoms, their mass (in grams) and the number of moles of hydrogen atoms are (1) 1.5, 3 and 24 respectively (2) 15. 18 and 3 respectively (3) 0.15, 27,3 respectively (4) 1.5, 24 and 3 respectively 26. The molecular formula of carboxylic acid that differs from the rest is $(1) C_{13} H_{26} O_{2}$ $(2) C_2 H_4 O_2$ $(3) C_0 H_{10} O_0$ $(4) C_7 H_{12} O_2$ 27. Foam of soap always appears white as (1) it contains large hydrocarbon chains. (2) it absorbs red portion of the visible light (3) it reflects light of all wavelengths. (4) it has one hydrophobic end, which is insoluble in water. In a neon gas discharge tube, every second 4.8 × 10¹⁸ Ne⁺ ions move towards the right through a croos 28. -section of the tube, while 'n' electrons move to the left in the same time. If the current in the tube is 1.12 amperes towards the right, n is equal to (given $e = 1.6 \times 10^{-19}$ coulomb) $(2) 2.2 \times 10^{18}$ $(1) 1.8 \times 10^{18}$ $(3) 2.4 \times 10^{19}$ $(4) 2.8 \times 10^{19}$ 29. Four situations are given below-I. An infinitely long wire carrying current II. A rectangular loop carrying current III. A solenoid of finite length carrying current IV. A circular loop carrying current. In which of the above cases will the magnetic field produced be like that of a bar magnet? (2) I and III (3) Only III (1)I(4) Only IV 30. In the circuit diagram shown below, $V_{_{\rm A}}$ and $V_{_{\rm B}}$ are the potentials at points A and B respectively. Then, V_A-V_B is 10Ω 20Ω 5Ω $10^{\circ}\Omega$ 30 V (1) - 10V(3) 0V(4) 10V(2) - 20V

change? I. mass		electric field, which an	nong the following properties	
II. charge III. velocity IV. momentum (1) II & III	(2) Only III	(2) III & IV	(4) I III & IV	
A ray of light in air is in the light travelled para angle between the inc	ncident on an equilatera	al glass prism at an ai n and emerged in air	ngle θ_i to the normal. After refraction, at an angle θ_i to the normal. If the	1
(1) 1.33	(2) 1.5	(3) 1.73	(4) 1.66	
kill the fish first by thre aim the spear and tore I. above the apparent II. below the appearer	owing a spear and next, ch, respectively, from the position of the fish nt position of the fish	, by pointing a high-po e options given below	ower laser torch. How should you	
partially refracted into	the denser medium. If th	e reflected and the ref	fracted rays are perpendicular to each	1
	ne refractive indices of c	denser and rarer med	ium is $\sqrt{3}$, the angle of refraction will	ļ
(1) 60°	(2) 30°	(3) 45°	(4) 41.5°	
who prescribed him a it corrected the near-s	lens of certain power to sightedness. However, u	increase the maximu upon using the presci	m distance of his vision to infinity , i.e., ribed lens the person discovered that	,
on hitting the ground b (1) horizontally (3) at an angle of 45° f	oe maximum? (2) vertically downwa rom the vertical in the do	irds ownward direction	·	
cylinder of height h float submerged in the upper	ts with one-fourth of its h liquid. Another beaker is econd beaker, the heigl	neight submerged in t s filled with the denser	the lower liquid and half of its height of the two liquids alone. If the same position would be.	
(1) h	(2) $\frac{3h}{4}$	(3) $\frac{h}{2}$	(4) $\frac{h}{4}$	
	the light travelled para angle between the incot air is (1) 1.33 You are standing on the kill the fish first by threating the spear and tore I. above the apparent II. below the apparent II. below the apparent III. directly at the app (1) SPEAR: II (2) SPEAR: II (3) SPEAR: II (4) SPEAR: III (4) SPEAR: III (4) SPEAR: III (4) SPEAR: III (5) SPEAR: III (6) SPEAR: III (7) SPEAR: III (8) SPEAR: III (8) SPEAR: III (9) SPEAR: III (10) SPEAR: IIII (10) SPEAR: III (10) SPEAR: IIII (A ray of light in air is incident on an equilaterathe light travelled parallel to the base of prismangle between the incident and the emergent ot air is (1) 1.33 (2) 1.5 You are standing on the shore of a lake. You kill the fish first by throwing a spear and next, aim the spear and torch, respectively, from the Labove the apparent position of the fish III. directly at the apparent position of the fish III. directly at the apparent position of the fish III. directly at the apparent position of the fish III. (2) SPEAR: II (2) SPEAR: II (3) SPEAR: II (4) SPEAR: III A beam of light coming from a rarer medium is partially refracted into the denser medium. If the other and the ratio of the refractive indices of other and the ratio of the fish indices of other and the ratio of the refractive indices of other and the ratio of the fish indices of the refractive indices of other and the refractive indices of other and the ratio of the fish indices of a lake	A ray of light in air is incident on an equilateral glass prism at an at the light travelled parallel to the base of prism and emerged in air angle between the incident and the emergent rays is 60°, then the ot air is (1) 1.33 (2) 1.5 (3) 1.73 You are standing on the shore of a lake. You spot a fish swimming kill the fish first by throwing a spear and next, by pointing a high-paim the spear and torch, respectively, from the options given below I. above the apparent position of the fish II. below the appearent position of the fish III. directly at the appare	A ray of light in air is incident on an equilateral glass prism at an angle θ_i to the normal. After refraction, the light travelled parallel to the base of prism and emerged in air at an angle θ_i to the normal. If the angle between the incident and the emergent rays is 60°, then the refractive index of glass with repect of air is (1)1.33 (2) 1.5 (3) 1.73 (4) 1.66 You are standing on the shore of a lake. You spot a fish swimming below the lake surface. You want to kill the fish first by throwing a spear and next, by pointing a high-power laser torch. How should you aim the spear and torch, respectively, from the options given below? I. above the apparent position of the fish III. below the appearent position of the fish III. directly at the apparent position of the fish III. directly at the apparent position of the fish III. directly at the apparent position of the fish III. SPEAR: II (2) SPEAR: II (2) LASER: III (2) SPEAR: II (3) SPEAR: II (4) SPEAR: III (5) LASER: III (6) SPEAR: III (7) LASER: III (8) SPEAR: III (9)

Assertion (A): Motion of a charged particle under the action of a magnetic field alone is always with

31.

39.	breaks into three equal-	mass pieces A, B and C,	which slide along the sur	the spring releases, the toy face. Piece A moves off in the Which of the three pieces is tical speeds
40.		' -		equal kinetic energies. Equal stances x_1 and x_2 respectively.
	(1) $x_1 = x_2$	$(2) \ \frac{X_1}{X_2} = \frac{m_1}{m_2}$	(3) $\frac{X_1}{X_2} = \sqrt{\frac{m_1}{m_2}}$	$(4) \ \frac{X_1}{X_2} = \sqrt{\frac{m_2}{m_1}}$
41.	-	•	_	the same number by 21, the der on dividing the number by
	(1) 4	(2) 6	(3) 9	(4) 13
42.	Expressing $0.\overline{34} + 0.3$	$3\overline{4}$ as a single decimal , v	we get	
	(1) 0.6788	(2) 0.689	(3) 0.6878	(4) 0.687
43.	If the value of a quadrat	tic polynomial p(x) is 0 on	aly at x = -1 and p(-2) = 2	, then the value of p(2) is
	(1) 18	(2) 9	(3) 6	(4) 3
44.	The graphs of the equa in the first quadrant, if a		= 3, where k is is a consta	nt, intersect at the point (x, y)
	(1) equal to -1	(2) greater than -1	(3) less than 3/2	(4) lying between –1 and 3/2
45.	If α and β are the roots	of the quadratic equation	$x^2 - 6x - 2 = 0$ and if	
	$a_n = \alpha^n - \beta^n$, then the va	lue of $\frac{a_{10} - 2a_8}{2a_9}$		
	(1) 6.0	(2) 5.2	(3) 5.0	(4) 3.0
46.	If S ₁ , S ₂ , S ₃ ,, S _r areand whose comm is	the sum of first n terms on differences are 1,3,5,	of r arithmetic progressio respectively, then the	n whose first terms are 1,2,3, he value of $S_1 + S_2 + S_3 + \dots S_r$
	(1) $\frac{(nr-1)(nr+1)}{2}$		$(2) \frac{(nr+1)nr}{2}$	
	(3) $\frac{(nr-1)nr}{2}$		(4) $\frac{n(nr+1)}{2}$	
47.				n of the top of tower is 30°. much more has he to travel
	(1) $10\sqrt{3}$ metres	(2) 10 metres	(3) 20 metres	(4) $\frac{10}{\sqrt{3}}$ metres

48. If
$$\csc x - \sin x = a$$
 and $\sec x - \cos x = b$, then :

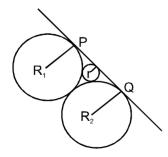
(1)
$$(a^2b)^{\frac{2}{3}} + (ab^2)^{\frac{2}{3}} = 1$$

(2)
$$(ab^2)^{\frac{2}{3}} + (a^2b^2)^{\frac{2}{3}} = 1$$

(3)
$$a^2 + b^2 = 1$$

(4)
$$b^2-a^2=1$$

A calf is tied a rope of length 12m at a corner of a rectangular field of the dimensions 35m × 25m. If the 49. length of the rope is increased to 23 m, then the additional grassy area in which the calf can graze is:


(Take
$$\pi = \frac{22}{7}$$
)

(1) 280.0 m²

- (2) 300.0 m²
- (3) 302.5m²
- (4) 312.5 m²
- 50. If Anish is moving along the boundary of a triangular field of sides 35 m, 53m and 66m and your are moving along the boundary of a circular field whose area is double the area of the triangular field, then

the radius of the circular field is (Take $\pi = \frac{22}{7}$):

- (1) $14\sqrt{3}$ m
- (2) $3\sqrt{14}$ m (3) $28\sqrt{3}$ m (4) $7\sqrt{3}$ m
- A circular metallic sheet is divided into two parts in such a way that each part can be folded in to a 51. cone. If the ratio of their curved surface areas is 1:2, the the ratio of their volumes is:
 - (1)1:8
- (2) 1 : $\sqrt{16}$
- (3) 1 : $\sqrt{10}$
- 52. A solid metallic block of volume one cubic metre is melted and recast into the form of a rectangular bar of length 9 metres having a square base. If the weight of the block is 90 kg and biggest cube is cut off from the bar, then the weight of the cube is:
 - (1) $6\frac{1}{2}$ kg
- (2) $5\frac{2}{3}$ kg
- (3) $4\frac{2}{3}$ kg (4) $3\frac{1}{3}$ kg
- 53. Two circles with centres P and R touch each other externally at O. A line passing through O cuts the circles at T and S respectively. Then,
 - (1) PT and RS are of equal length
- (2) PT and RS are perpendicular to each other
- (3) PT and RS are intersecting
- (4) PT and RS are parallel
- 54. If in a triangle ABC, D is the mid-point of side BC, \angle ADB = 45° and \angle ACD = 30° then \angle BAD and ∠ABC are respectively equal to :
 - (1) 15°, 105°
- (2) 30°, 105°
- (3) 30°, 100°
- (4) 60°, 100°
- 55. Three circles with radii R₁, R₂ and r touch each other externally as shown in the adjoining figure. If PQ is their common tangent and $R_1 > R_2$, then which of the following relations is correct?

(1)
$$R_1 - R_2 = r$$

(2)
$$R_1 + R_2 = 2$$

(3)
$$\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{r}$$

(2)
$$R_1 + R_2 = 2r$$
 (3) $\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{r}$ (4) $\frac{1}{\sqrt{R_1}} + \frac{1}{\sqrt{R_2}} = \frac{1}{\sqrt{r}}$

- ABC is a triangle in which AB = 4 cm, BC = 5 cm and AC = 6 cm. A circle is drawn to touch side BC 56. at P, side AB extended at Q and side AC extended at R. Then, AQ equals:
 - (1) 7.0 cm
- (2) 7.5 cm
- (3) 6.5 cm
- (4) 15.0 cm

	equation $x + 2y = k$,	the v	alue of k is			
	(1) $\frac{5}{7}$	((2) $\frac{31}{7}$	(3)	$\frac{36}{7}$	(4) $\frac{41}{7}$
59.						imbers and 15 less than the of squares of the numbers
	(1) $108\frac{2}{3}$	((2) 116 $\frac{2}{3}$	(3) 2	$208\frac{1}{3}$	(4) 216 $\frac{2}{3}$
60.	Three dice are throw appearing on their to		•	ability	of getting a total of a	at least 5 of the numbers
	(1) $\frac{5}{54}$	((2) $\frac{7}{54}$	(3)	49 54	(4) $\frac{53}{54}$
61.	Match the following					
	[Α.	Livre	I.	A tax levied by the	
		B.	Manor	li.	Church An estate of Lord's and his mansion	lands
		C.	Tithe T	III.	Tax to be paid direct the state	ctly to
		D.	Taille	IV.	Unit of currency	
	(1) A-III, B-II, C-IV, D	-I ((2) A-II, B-Iv, C-I, D-III	(3)	A-IV, B-II, C-III, D-I	(4) A-IV, B-I, C-II, D-III
62.	came into existance Reason(R): The pov (1) Both A and R are	wer of true true false	f Tsar was curbed by it and R is the correct ex but R is not the correct	kplana	tion of A	d consultative parliament
63.	Arrange in correct ch I. Dawes Plan II. Crashing of the W III. Birth of Weima IV. Creation of ((1) I, II, III, IV (3) IV, II, III, I	'all St r Rep	reet Exchange ublic apo (Secret State Polic (2) III,	:e) II, I, I\ I, II, I\		
64.	Reason (R): The time rhythms of village life (1) Both A and R are	ne lime. true true	and R is the correct ex but R is not the correc	ieness kplana	about the size of Crition of A	icket ground is a result of the

The centre of the circle passing through the ponts (6, -6), (3, -7) and (3, 3) is

(3)(3,-2)

If the line segment joining (2, 3) and (-1, 2) is divided internally in the ratio 3: 4 by the graph of the

(4) (-3, 2)

(2)(-3,-2)

57.

58.

(1) (3, 2)

(4) A is false and R is true

Assertion (A): In the 17th and 18th Century merchants from the towns in Europe started financing peasants and artisans in the country side for productton for them.

Reason (R): In the urban centres powerful crafts and trade guilds with monopoly rights restricted the entry of new people into the trade.

- (1) Both A and R are True and R is correct explanation of A
- (2) Both A and R are True but R is not correct explanation of A
- (3) A is True and R is False
- (4) A is False and R is True
- **66.** Assertion (A): Colonial Forest Act changed the lives of villagers across the country

Reason (R): Now the villagers could comfortably make use of the forest resources for everyday needs

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is not the correct explanation of A
- (3) A is true and R is false
- (4) A is false and R is true
- **67.** Arrange the following events of nineteenth century Europe in ascending order.
 - I. Unification of Germany
 - II. Beginning of Greek struggle for independence
 - III. Unification of Italy
 - IV. Vienna Peace Settlements
 - (1) III, I, II, IV
- (2) IV, II, III, I
- (3) I, III, IV, II
- (4) IV, II, I, III
- 68. Arrange the following events in descending order with regard to Nationalist Movement in Indo-China.
 - I. Creation of Indo-China union,
 - II. Formation of Communist Party in Vietnam
 - III. Paris Peace Treaty
 - IV. Declaration of independence by Ho Chi Minh
 - (1) III, IV, II, I
- (2) III, IV, I, 11
- (3) I, II, III, IV
- (4) I, II, IV, III
- **69.** Find out the correct statements with regard to Rowlatt Act.
 - I. The Rowlatt Act was passed in 1919
 - II. The Act was passed by Imperial Legislative Council
 - III. The Act allowed detention of Political prisoners without trial for three years
 - IV. Protests against the Act led to Jallianwalla Bagh massacre in April 1920.
 - (1) Only II and III are correct

(2) Only I and III are correct

(3) Only III and IV are correct

- (4) Only I and II are correct
- **70. Assertion (A):** Population growth from the late eighteenth century, increased the demand for food grains in Britain

Reason (R): 'Corn Laws' introduced by the government helped in -reducing the food prices.

- (1) Both A and R are True and R is correct explanation of A
- (2) Both A and R are True but R is not correct explanation of A
- (3) A is True R is False
- (4) A is False R is True
- 71. Match the fallowing

Galley	I.	Old name of Tokyo
Edo	II.	Contained six sheets of text and wood cut
		illustrations
Vellum	111.	Metal Frame in which
		types are laid and the text
		composed
Diamond Sutra	IV.	A parchment made from skin of animals
	Edo Vellum Diamond	Edo II. Vellum III. Diamond IV.

(1) A-III, B-I, C-II, D-IV

(3) A-I, B-III, C-IV, D-II

(2) A-I, B-III, C-II, D-IV

(4) A-III, B-I, C-IV, D-II

- **72.** Given below are statements regarding the course of development of Socialism in Europe. Arrange them in chronological sequence.
 - I. Socialists took over the government in Russia through the October Revolution.
 - II. Socialists and trade unionists formed a labour party in Britain and Socialist party in France.
 - III. The Russian Social Democratic Worker's Party was founded by Socialists who respected Marx's ideas.
 - IV. Socialists could not succeed in forming a government in Europe and governments continued to be run by conservatives, liberals and radicals.
 - V. Second International was formed to coordinate the efforts of socialists throughout Europe.

(1) V, III, II, IV, I

(2) I, II, III, IV, V

(3) V, II, III, I, IV

(4) IV, V, III, I, II

- 73. Hitler's ideology related to the geopolitical concept of Lebensraum, or living space implied:
 - (1) There was no equality between people, but only a racial hierarchy
 - (2) Only those species survived on earth that could adapt themselves to changing climatic conditions.
 - (3) New territories had to be acquired for settlement to increase the area of the mother country.
 - (4) An exclusive racial community of pure Germans to be created by physically eliminating all those who were seen as undesirable.
- **74.** During the mid-eighteenth century

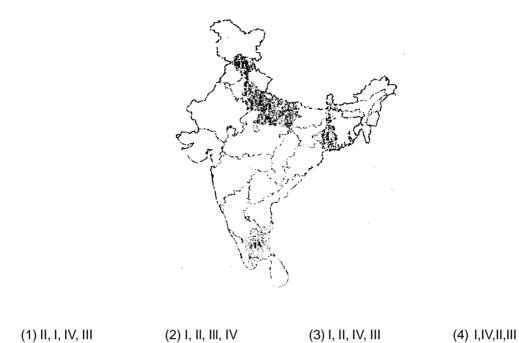
Assertion (A): Indian spinners and weavers were left without work and important centers of textile declined

Reason (R): Large number of people began boycotting British cloth and started adopting khadi.

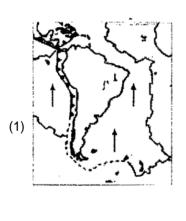
- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not the correct explanation of A.
- (3) A is true and R is false
- (4) A is false and R is true
- **75. Assertion (A):** Mahatma Gandhi called off the Civil Disobedience Movement and entered into a Pact with Irwin in 1931.

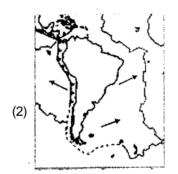
Reason (R): Industrial workers in Sholapur attacked structures that symbolized British rule.

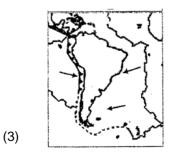
- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is not the correct explanation of A.
- (3) A is true and R is false
- (4) A is false and R is true
- **76. Assertion (A):** The latitudinal extent influences the duration of day and night, as one moves from south to north of India.

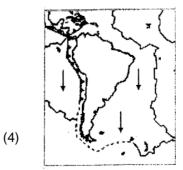

Reason (R): From Gujarat to Arunachal Pradesh there is a time lag of two hours.

- (1) Both A and R are true and R explains A
- (2) Both A and R are true but R does not explain A
- (3) A is true and R is false
- (4) A is false and R is true
- **77. Assertion (A):** Kharif crops are grown, with the onset of monsoon in different parts of India and harvested September-October.


Reason (R): Availability of precipitation due to the western temperate cyclones helps in growing of these crops.


- (1) Both A and R are true and R explains A
- (2) Both A and R are true but R does not explain A
- (3) A is true and R is false
- (4) A is false and R is true


78. Arrange the shaded states shown on the map of India in descending order of population density and select the right code.



79. Which one of the following figure is showing the correct direction of movement of the South America plate?

80. Based on the data (elevation and latitude) provided below which of the following tourist center is most probably indicated?

Elevation: 3500 meters -

Latitude: 34°N

- (1) Shillong
- (2) Mussoorie
- (3) Kodaikanal
- (4) Leh
- **81.** Keeping in mind the location of the following sanctuaries/ national parks of India, arrange them' from.south to north:
 - (1) Periyar,
- (2) Dachiga.m,
- (3) gariska,
- (4) Kanha
- 82. Match list I (Revolution) with list II (Area) and select the correct answer using the codes given below:

(Re	List 1 evolution)		List II (Area)
Α.	Blue	I.	Dairy development
B.	Green	II.	Fisheries development
C.	White	III.	Food production
D.	Yellow	IV.	Silk production

- (1) A-II,B-III,C-IV,D-I
- (2)A-III,IV,C-II,D-I
- (3) A-IV, B-II, C-I, D-III
- (4) A-II,B-III,C-I,D-IV
- 83. Assertion (A): The availability of water resources varies over space and time in India

Reason (R): Water availability is governed by variations in seasonal annual precipitation although water scarcity is aggravated by over-exploitation and unequal access to water among different social groups.

- (1) Both A and R are true and R explains A
- (2) Both A and R are true but R does not explain A

(3) A is ture and R is false

- (4) A is false and R is true
- 84. Match list I (Type of Resources) with list II (Basis of Classification) and select the codes given below:

97	List I (Type of Resources)	77230005	st 1I (Basis of lassification
A.	Biotic and abiotic	I.	Status of development
В.	Renewable and non- renewable	И.	Origin
C.	Individual, community, national and international	III.	Ownership
D.	Potential, developed, stock and reserves	IV.	Exhaustibility

- (1) A-II, B-I, C-III, D-IV
- (2) A-II,B-III,C-IV, D-I
- (3) A-II,B-IV, C-III,D-I
- (4) A-IV, B-II, C-III, D-I

Which one of the following is the correct order of rivers from north to south?

- 85.
- (1) Ravi, Chenab, Jhelum, Indus
- (2) Indus, Jhelum, Chenab, Ravi
- (3) Jhelum, Indus, Ravi, Chenab
- (4) Chenab, Ravi, Indus, Jhelum

86. Match list I (national Highways of India) with list II (Description) and select the codes given below:

B	List I (National lighways of India)	List	t II (Description)
A.	National Highway Number I	1.	Covers most of Rajasthan
В.	National Highway Number 15	II.	Known as Sher Shah Suri Marg
C.	National Highway Number 7	III.	Connects Delhi and Mumbai
D.	National Highway Number 8	IV.	Is the longest National Highway

- (1) A-IV, B-III, C-I, D-II (2) A-I, B-II, C-IV, D-III (3) A-II, B-I, C-IV, D-III (4) A-I, B-III, C-II, D-IV
- 87. Which of the following statement is not true to the context of Mawsynram?
 - (1) It is considered as the wettest place on the earth
 - (2) It possesses caves with stalagmites and stalactites
 - (3) It is located Very close to Cherrapunji
 - (4) It is located very close to the Myanmar border
- **88.** Which one of the following facts about the shaded state shown below is incorrect?

- (1) Terrace cultivation is widespread in the hill areas
- (2) The state is a major producer of uranium
- (3) Population density is well below the national average
- (4) More than 80 per cent of the area has forest as the land cover

	(1) Only Malwa (3) Only Meghalaya		(2) Only Chotanagpur (4) Both Malwa and Cho	otanagpur
90.	hemispere and towards Reason (R): The press (1) Both A and R are tru	the left in the southern houre and wind system of and eand R explains And but R does not explain se	emisphere. ny area depend on the lat	vards the right in the northern itude and altitude of the place.
91.	are true? I. Educational qualificat II. Relevatn qualification problems. III. Educated clected report is casier for the educated clected.	ion will deprive illiterate of for being elected represe prescntatives keep distan ucated elected represent	citicens of the right to con entatives is not education ace from the common pec aivcs to use power for pe	but ability to address people's ople.
92.	Which of the following Amcndment Act, 1976 of I. Integrity II. Secular III Socialist IV. Unity (1) I, III and IV		the Preamble to the Ind	lian Constitution by the 42nd (4) I, II and IV
93.	Which of the following matters of global import (1) General Assembly of (2) International Moneta (3) Security Council of t (4) World Bank	ance ? If the united Nations Iry Fund	s has a more democratio	way of decision -making on
94.	Which of the following f I. Economic developme II. Language III. Education IV. Elections V. Region (1) I, III, and IV		o changes in the caste sy (3) II, III and IV	ystem? (4) I, III and V

The Tropic of Cancer passes through which of the following plateau?

89.

95. Match List I with List II and select the answer using the codes given below.

	List I	2000 March 1990	List II
A.	Supervises the overall functioning of all the political institutions in the country	I.	The Supreme Court
B.	Distributes and redistributes work to the ministers	II.	The President
C.	Ministers may have different views but have to own up every decision	III.	The Prime Minister
D.	Determines the constitutionality of any contentious action	IV.	The Cabinet

(1) A-IV, B-III, C-II, D-I (2) A-II, B-III, C-IV, D-I (3) A-II, B-IV, C-III, D-I (4) A-III, B-IV, C-I, D-II

96. Calculate the female literacy rate from the given data.

Gender	Total Persons	Literate Persons
Males	1200	1050
Females	580	340
Total	1780	1390

(1)32.5

(2)19.1

(3)58.6

(4)28.3

97. Which of these activities contributes to India's national income?

I. Cooking at home

II. A teacher teaching his children at home

III. A doctor prescribing medicines in a clinic

IV. Cooking in a restaurant

(1) I and II

(2) II and III

(3) III and IV

(4) I and IV

98. In an imaginary economy the monetary value of contributions of primary sector, public sector, secondary sector and service sector are Rs.100, Rs.25, Rs. 28 and Rs. 77 respectively. The gross domestic product of the cconomy is

(1) Rs. 100

(2) Rs. 205

(3) Rs. 153

(4) Rs. 230

99. Four families in a village, which has only a ration shop. have access to foodgrains as shown in the table. Identify_ the families that lack food security.

Family	Food requirement in kg	Food grain price / kg	Money available to each family for buying food grains	Possessing Ration card		
Α	50	10	600	Yes		
В	30	10	330	No		
С	20	10	180	Yes		
D	40	10	400	Yes		

- (1) A and B
- (2) B and C
- (3) C and D
- (4) D and A
- 100. Robinson Crusoe goes to sea with a net for fishing. Classify the factors of production and choose the appropriate option given below.

	ltem	Classification				
A.	Knowledge of fishing	I.	Physical Capital			
В.	Net	II.	Labour			
C.	Sea	III.	Human Capital			
D,	Swimming	IV.	Land			

- (1) A-III,B-IV,C-II,D-I (2) A-IV,B-III,C-I,D-II
- (3) A-III,B-I,C-IV,D-II
- (4) A-II,B-I,C-III,D-IV

NATIONAL TALENT SEARCH EXAMINATION NTSE STAGE-II (2016) CLASS-X [SAT]

HINTS & SOLUTIONS

ANSWER KEY

														6 4	100
Ques.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	3	2	1	3	4	4	2	3	3	1	4	2	2	4	2
Ques.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	4	2	2	3	2	1	2	4	3	4	4	3	2	3	4
Ques.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	1	3	3	1	2	1	4	3	3	_ 1	1	4	71g	4	4
Ques.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	2	1	3	1	3	4	4	2	4	2	3	4	4	4
Ques.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	Bonus	3	4	1	1	3	2	4	4	3	4	1	3	2	1
Ques.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	2	3	3	3	4	4	4	1	3,	2	3	4	2	4	2
Ques.	91	92	93	94	95	96	97	98	99	100					
Ans	4	3	1	1	2	3	3	2	2,3	3					

CHEMISTRY

15. Ans. (2)

Neutrons present in one molecule of water = 8 $\binom{16}{8}$ O

One mole of water contains = $8 N_A$ neutrons So in 5 moles of water = $5 \times 8 \times N_A$

 $= 5 \times 8 \times 6.023 \times 10^{23}$

 $= 2.409 \times 10^{25}$

16. Ans. (4)

Na & Fe both are more reactive than Cu but Fe is having more affinity to form sulphates so Fe is used to recover copper from copper sulphate solution.

$$\mathsf{Fe}_{(\mathsf{s})} \, + \, \mathsf{CuSO}_{_{4(\mathsf{aq})}} \quad {\longrightarrow} \, \mathsf{FeSO}_{_{4(\mathsf{aq})}} \! + \, \mathsf{Cu}_{(\mathsf{s})}$$

17. Ans. (2)

In solution **A** path of light is visible and particles settle down at bottom, so it is **suspension**. In solution **B** & **D** light path is visible and particles do not settle at bottom so these are **colloids**.

In solution **C** light path is invisible and particles do not settle down at bottom, so it is a **true solution**.

18. Ans. (2)

Both (A) & (R) are correct statement. But as Gold is most malleable, so it was used in α -particle scattering experiment.

19. Ans. (3)

Magnesium gets corrode with the layer of oxide. In order to remove the layer of oxide, it is rubbed

$$2Mg + O_2 \longrightarrow 2MgO$$

20. Ans. (2)

(i)
$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

(ii)
$$2Al_2O_3 \xrightarrow{\text{electrolysis}} 4Al + 3O_2$$

(iii) 2NaHCO₃
$$\xrightarrow{\Delta}$$
 Na₂CO₃ + CO₂ + H₂O

(iv) 2HgO
$$\xrightarrow{\Delta}$$
 2Hg + O₂

Eq.(i),(iii),(iv) are example of thermal decompostion but eq. (ii) is an example of electrolytic decompostion.

21. Ans. (1)

Oxide of X is amphoteric in nature so it can react with acids & bases both. Only metals can form amphoteric oxides so X is electropositive in nature

$$X \rightarrow 2, 8, 1 \Rightarrow Na$$

$$Y \rightarrow 2, 8, 7 \Rightarrow CI$$

Compound \Rightarrow NaCl \Rightarrow It is good conductor of electricity in molten and fused state but not in solid state

23. Ans. (4) Structure of NH₄Cl is

NH₄Cl contains, ionic, covalent bond & coordinate bond.

24. Ans. (3) Sulphur is a non metal so it does not have tendency to lose electrons so it can not be used as reducing agent.

25. Ans. (4) Given no. of oxygen atoms = 9.033 × 10²³

(i) moles of oxygen atoms =
$$\frac{9.033 \times 10^{23}}{6.023 \times 10^{23}}$$

= 1.499 moles \simeq 1.5 moles

(ii) mass of oxygen atoms

= 1.5 moles × 16 gm = 24 grams

(iii)
$$2H_2 + O_2 \longrightarrow 2H_2O$$

2 moles of oxygen atoms requires
= 4 gm of H_2

1.5 moles of oxygen atoms requires = $\frac{1.5 \times 4}{2}$

= 3 moles of Hydrogen atom

26. Ans. (4)

$$\begin{array}{ll} C_{_{13}}H_{_{26}}O_{_2}, C_{_2}H_{_4}O_{_2}, C_{_9}H_{_{18}}O_{_2} & \longrightarrow \text{Acids Contain} \\ (C-C) \text{ Single Bond } (C_{_n}H_{_{2n}}O_{_2}) \end{array}$$

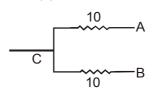
 $C_7H_{12}O_2 \longrightarrow This acid contains (C = C) double bond.(C_nH_{2n-2}O_2)$

27. Ans. (3)

> Foam of soap is a large bunch of bubbles which are made of very thin film of soap solution and some air. Bubbles allow some light to pass through them and scatter the rest. If no specific colour is reflected, we consider this state of colourlessness as white.

PHYSICS

28. Ans. (2) $(4.8 \times 10^{18} + x)1.6 \times 10^{-19} = 1.12$


$$(4.8 \times 10^{18} + x) = \frac{1.12}{1.6 \times 10^{-19}}$$

 $4.8 \times 10^{18} + x = 7 \times 10^{18}$ $x = 7 \times 10^{18} - 4.8 \times 10^{18}$

 $= 2.2 \times 10^{18}$

29. Ans. (3)

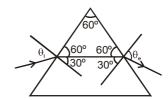
30. Ans. (4)

 $R_{eff} = \frac{30 \times 15}{3 \times 15} = \frac{30 \times 15}{45} = 10\Omega$

In branch CA current = 1A

In branch CB current = 2A

$$... V_{c} - V_{A} = 10V$$
 ... (i)
& $V_{c} - V_{B} = 20V$... (ii)

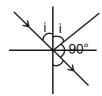

Subtracting (i) from (ii)

$$V_A - V_B = 10V$$

31. Ans. (1)

32. Ans. (3)

33. Ans. (3)



 $r_1 = r_2$: min deviation condition

$$\mu = \frac{\sin\!\!\left(\frac{A(\delta_m)}{2}\right)}{\sin\!\frac{A}{2}}$$

$$\mu = \frac{\sin\left(\frac{60 + 60}{2}\right)}{\sin\frac{60}{2}} = \frac{\sin 60}{\sin 30} = \sqrt{3}$$

34. Ans. (1)

$$i + r = 90^{\circ}$$

$$_{d}\mu_{r} = \frac{\sin i}{\sin r}$$

$$\sqrt{3} = \frac{\mu_d}{\mu_r} = \frac{\sin i}{\sin(90 - i)}$$

$$\sqrt{3}$$
 = tan i

$$i = 60^{\circ}$$
 : $r = 30^{\circ}$

36. Ans. (1)
(i)
$$V = -300$$

Case: $u = -\infty$
 $f = ?$

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

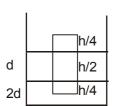
$$\frac{1}{f} = -\frac{1}{300} - 0$$

f = -300 cm

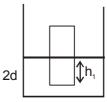
Case: II

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$

$$-\frac{1}{300} = \frac{-1}{50} - \frac{1}{u}$$


$$\frac{1}{u} = \frac{-1}{50} + \frac{1}{300}$$

$$\frac{1}{u} = \left(\frac{-6+1}{300}\right)$$


$$\frac{1}{u} = -\frac{1}{60}$$

$$u = -60 \text{ cm}$$

- 37. Ans. (4)
- 38. Ans. (3)

$$Vd_{Solid} g = \frac{V}{4} 2dg + \frac{V}{2}dg$$
$$d_{Solid} = d$$

$$Vd_{Solid} g = V_1 2dg$$

Ahdg = Ah₁2dg

$$\therefore h_1 = \frac{h}{2}$$

- 39. Ans. (3)
- 40. Ans. (1) $w = K_f K_i = Fx$ since K_f and K_i are same in both case and stopping force is also so x will be same for both.

MATHEMATICS

- 41. When Divided by 13 leaves remainder 3 When Divided by 21 leaves remainder 3 13 - 3 = 21 - 11 = 10 = kLCM (13,21) - k = 546 - 10 = 536 $536 = 19 \times 8 + 4$ \therefore remainder = 4
- **42.** $0.\overline{34} + 0.3\overline{4}$ 0.343434... + 0.344444... 0.6878787... $0.68\overline{7}$
- 43. Quadratic polynomial $p(-2) = k (x + 1)^2$ $p(-2) = k (-2 + 1)^2 = 2$ k = 2 $p(x) = 2 (x + 1)^2$ $p(2) = 2(2 + 1)^2 = 2 \times 3 \times 3 = 18$
- 44. x y = 2 ..(1) kx + y = 3 ..(2) by adding (1) and (2) kx + x = 5x(k + 1) = 5

$$x = \frac{5}{k+1}$$

putting value of x in equation (1)

$$\frac{5}{k+1} - y = 2$$

$$\frac{5}{k+1} - 2 = y$$

$$\frac{5-2k-2}{k+1} = y$$

$$y = \frac{3-2k}{k+1}$$

y should be positive as they intersect in 1st quadrant therfore

$$\frac{3-2k}{k+1} > 0 \Rightarrow \frac{2k-3}{k+1} < 0$$

+ - +

 \therefore k should lie between – 1 and 3/2

∴ Ans 4

45.
$$x^2 - 6x - 2 = 0$$

 $\alpha^2 - 2 = 6\alpha$
 $\beta^2 - 2 = 6\beta$
 $\alpha + \beta = 6 \alpha \beta = -2$
 $\alpha = \alpha^n - \beta^n$

$$\frac{a_{10} - 2a_8}{2a_9} = \frac{\alpha^{10} - \beta^{10} - 2(\alpha^8 - \beta^8)}{2(\alpha^9 - \beta^9)}$$

$$\frac{\alpha^{10} - \beta^{10} + \alpha\beta(\alpha^8 - \beta^8)}{2(\alpha^9 - \beta^9)}$$

$$\frac{\alpha^{10} + \alpha^9 \beta - (\alpha \beta^9 + \beta^{10})}{2(\alpha^9 - \beta^9)}$$

$$\frac{\alpha^{9}(\alpha+\beta)-\beta^{9}(\alpha+\beta)}{2(\alpha^{9}-\beta^{9})}$$

$$\frac{(\alpha+\beta)(\alpha^9-\beta^9)}{2(\alpha^9-\beta^9)}$$

$$\frac{6}{2} = 3$$

46.
$$S_1 = \frac{n}{2} [2(1) + (n-1)(1)]$$

$$S_2 = \frac{n}{2} [2(2) + (n-1)(3)]$$

$$S_3 = \frac{n}{2} [2(3) + (n+1)(5)]$$

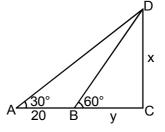
. .

.

.

$$S_r = \frac{n}{2} [2(r) + (n-1)(2r-1)]$$

$$S_1 + S_2 + \dots + S_r = \frac{n}{2}$$


$$\left[(2)\frac{r(r+1)}{2}+(n-1)\frac{r}{2}[1+2r-1]\right]$$

$$=\frac{n}{2}[r(r+1)+(n-1)r^2]$$

$$= \frac{nr}{2} [r + 1 + nr - r]$$

$$= \frac{nr}{2}[nr+1]$$

47.

In ∆DBC

$$\tan 60^{\circ} = \frac{x}{y}$$

$$x = \sqrt{3} y$$
 ...(1)

In ∆ADC

$$\tan 30^\circ = \frac{x}{20 + y}$$

$$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}y}{20 + y}$$

$$y + 20 = 3y$$

$$2y = 20$$

$$y = 10$$

48. cosecx - sinx = a; secx - cosx = b

$$cosecx - \frac{1}{cosecx} = a$$
; $sec x - \frac{1}{sec x} = b$

$$\Rightarrow \frac{\cos ec^2x - 1}{\csc x} = a$$
; $\frac{\sec^2x - 1}{\sec x} = b$

$$\Rightarrow \frac{\cot^2 x}{\csc x} = a ; \frac{\tan^2 x}{\sec x} = b$$

$$\frac{\cos^2 x}{\sin x} = a$$
; $\frac{\sin^2 x}{\cos x} = b$

$$a^2b = \frac{\cos^4 x}{\sin^2 x} \cdot \frac{\sin^2 x}{\cos x} = \cos^3 x$$

$$\Rightarrow$$
 cosx = $(a^2b)^{1/2}$

$$\cos^2 x = (a^2b)^{2/3}$$

Similarly,
$$\sin^2 x = (ab^2)^{2/3}$$

$$\therefore \sin^2 x + \cos^2 x = 1 \implies ab^2)^{2/3} + (a^2b)^{2/3} = 1$$

49. increase in area

$$\frac{\theta}{360^{\circ}} \times \pi (23)^{2} - \frac{\theta}{360^{\circ}} \times \pi (12)^{2}$$
$$\theta = 90^{\circ}$$

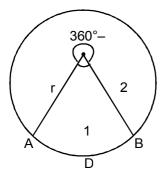
$$=\frac{90^{\circ}}{360^{\circ}}\times\pi\,[(23)^2-(12)^2]$$

$$=\frac{121\times5}{2}$$

$$=\frac{605}{2}=302.5$$

50.

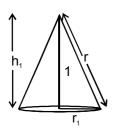
51.

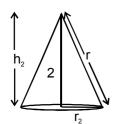

Area of $\Delta = \sqrt{77(42)(24)(11)} = 924$ $\pi r^2 = 2(924)$

$$r^2 = \frac{2 \times 924 \times 7}{22}$$

$$r^2 = 588$$

$$r = 14 \sqrt{3}$$




 $\frac{\text{Area of sec tor ADB}}{\text{Area of sec tor ACD}} = \frac{\frac{\theta}{360^{\circ}} \times \pi r^{2}}{\frac{360^{\circ} - \theta}{360^{\circ}} \times \pi r^{2}}$

$$\Rightarrow \frac{1}{2} = \frac{\theta}{360^{\circ} - \theta}$$
$$\Rightarrow \alpha = 120^{\circ}$$

$$\therefore \widehat{ADB} = \frac{\theta}{360^{\circ}} \times 2 \pi r = \frac{2\pi r}{3}$$

$$\Rightarrow$$
 $\widehat{ACB} = \frac{4\pi r}{3}$

 \widehat{ADB} = circumference of base = $2\pi r_1$

$$\frac{2\pi r}{3} = 2\pi r_1 \Rightarrow r_1 = \frac{r}{3}$$

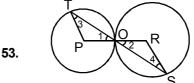
Similarly $r_2 = \frac{2r}{3}$

$$h_1 = \sqrt{r^2 - r_1^2} = \sqrt{r^2 - \frac{r^2}{9}} = \frac{2\sqrt{2}r}{3}$$

Similarly, $h_2 = \frac{\sqrt{5}r}{3}$

$$\frac{V_1}{V_2} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2} = \left(\frac{r_1}{r_1}\right)^2 \left(\frac{h_1}{h_2}\right)^2 = \frac{1}{4} \times \frac{2\sqrt{2}}{\sqrt{5}}$$

$$= \frac{1}{\sqrt{10}}$$


52. Volume of metallic block = Im^3 ...(1) let the side of the square base is x m so, volume of the rectangular bar = $x^2 \times 9$...(2)

$$9x^2 = 1 \Rightarrow x^2 = \frac{1}{9} \Rightarrow x = \frac{1}{3} \text{ m}$$

side of cube possible = $\frac{1}{3}$ m

so, weight of the cube = weight of block $\times \left(\frac{1}{3}\right)^3$


$$= 90 \times \frac{1}{27} = \frac{10}{3} \text{ kg} = 3\frac{1}{3} \text{ kg}$$

$$\angle 1 = \angle 3$$

 $\angle 2 = \angle 4$

(V.O.A.)

As alternate interior angles are equal

Draw BL perpendicular to AC and join L to D. Since \angle BCL = 30°. we get \angle CBL = 60°. Since BLC is a right triangle with \angle BCL = 30°, we have BL = BC/2 = BD. Thus in triangle BLD, we observe that BL = BD and \angle DBL = 60° and \angle ADB = 45°, we get \angle ADL = 15°

But \angle DAL = 15°. Thus LD = LA. We hence have LD = LA = LB. This implies that L is the circumcentre of the triangle BDA. Thus

$$\angle BAD = \frac{1}{2} \angle BLD = \frac{1}{2} \times 60^{\circ} = 30^{\circ}$$

$$30^{\circ} + 45^{\circ} + \angle ABC = 180^{\circ}$$

hence ∠ABC = 105°

55. PR =
$$\sqrt{(R_1 + r)^2 - (R_1 - r)^2} = \sqrt{4R_1r}$$
 ...(1)

$$RQ = \sqrt{4R_2r}$$
 ...(2)

$$PQ = \sqrt{4R_1R_2}$$
 ...(3)

$$PQ = PR + RQ$$

$$\Rightarrow \sqrt{4R_1R_2} = \sqrt{4R_1r} + \sqrt{4R_2r}$$

$$\sqrt{R_1R_2} = \sqrt{R_1r} + \sqrt{R_2r}$$

$$\frac{1}{\sqrt{r}} = \frac{1}{\sqrt{R_2}} + \frac{1}{\sqrt{R_1}}$$

$$Q$$

$$Q$$

$$R$$

56.

Perimeter of triangle ABC = AB+BC+CA 15=(AQ-BQ)+(BP+PC)+(AR-CR) 15=2AQ

(BQ=BP, PC=RC,AQ=AR as tangent from extternal point to a circle are equal)

57.
$$(x-6)^2 + (y+6)^2 = (x-3)^2 + (y+7)^2$$

$$..(1)$$

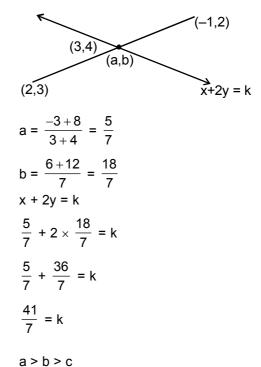
$$(x-3)^2 + (y-3)^2 = (x-3)^2 + (y+7)^2$$

$$y^2 - 6y + 9 = y^2 + 14y + 49$$

$$-20y = 40$$

$$put y = -2 in equation (1)$$

$$(x-6)^2 + (4)^2 = (x-3)^2 + (5)^2$$


$$x^2 - 12x + 36 + 16 = x^2 - 6x + 9 + 25$$

$$-6x = -18$$

$$x = 3$$

58.

59.

$$\frac{a+b+c}{3} = c+10 = a-15 = k$$

$$b = 5$$

$$c = k-10$$

$$a = k+15$$

$$a+b+c=3k$$

$$k+15+5+k-10=3k$$

$$10 = k$$

$$a = 25$$

$$b = 5$$

$$c = 0$$

$$mean = \frac{25^2+5^2+0^2}{3} = \frac{650}{3} = 216\frac{2}{3}$$

60. P(sum at least 5)=1–P(Getting sum 3 or 4) no of ways getting sum 3 = 1 way i.e. (1,1,1,1) no of ways getting sum 4 = 3 ways i.e. (1,1,2,1),(1,2,1),(2,1,1)

So P(sum at least 5)=1-
$$\frac{1+3}{216}$$
= $\frac{212}{216}$ = $\frac{53}{54}$