Circles

1 Mark:

1. If the angle between two tangents drawn from an external point \(P \) to a circle of radius \(a \) and centre \(O \), is \(60° \), then find the length of \(OP \).

 CBSE 2017, Outside Delhi (30/1)

2. \(PQ \) is a tangent drawn from an external point \(P \) to a circle with centre \(O \), \(QO \) is the diameter of the circle. If \(\angle POR = 120° \), what is the measure of \(\angle OPQ \)?

 CBSE 2017, Foreign (30/2/1)

3. In the given figure \(PA \) and \(PB \) are tangents to a circle with centre \(O \).
 If \(\angle APB = (2x + 3)° \) and \(\angle AOB = (3x + 7)° \), then find the value of \(x \).

 CBSE Sample Paper 2017

4. In figure, \(PQ \) is a tangent at a point \(C \) to a circle with centre \(O \). If \(AB \) is a diameter and \(\angle CAB = 30° \), find \(\angle PCA \).

 CBSE 2016, Outside Delhi (30/1)

5. From an external point \(P \), tangents \(PA \) and \(PB \) are drawn to a circle with centre \(O \). If \(\angle PAB = 50° \), then find \(\angle AOB \).

 CBSE 2016, Delhi (30/1/1)

6. In figure, \(AOB \) is a diameter of a circle with centre \(O \) and \(AC \) is a tangent to the circle at \(A \). If \(\angle BOC = 130° \), then find \(\angle ACO \).

 CBSE 2016, Foreign (30/2/1)

7. In figure, \(PA \) and \(PB \) are tangents to the circle with centre \(O \) such that \(\angle APB = 50° \). Write the measure of \(\angle OAB \).

 CBSE 2015, Delhi (30/1/1)

8. In figure, \(PQ \) is a chord of a circle with centre \(O \) and \(PT \) is a tangent. If \(\angle QPT = 60° \), find \(\angle PRQ \).

 CBSE 2015, Outside Delhi (30/1)

9. Two circles touch each other externally at \(P \). \(AB \) is a common tangent to the circles touching them at \(A \) and \(B \). The value of \(\angle APB \) is

 A) \(30° \) B) \(45° \) C) \(60° \) D) \(90° \)

 CBSE 2014, Outside Delhi (30/1), (30/2), (30/3)

10. In a right triangle \(ABC \), right-angled at \(B \), \(BC = 12 \text{ cm} \) and \(AB = 5 \text{ cm} \).
 The radius of the circle inscribed in the triangle (in cm) is

 A) \(4 \) B) \(3 \) C) \(2 \) D) \(1 \)

 CBSE 2014, Outside Delhi (30/1), (30/2), (30/3)
11. In figure, PA and PB are two tangents drawn from an external point P to a circle with centre C and radius 4 cm. If $PA \perp PB$, then the length of each tangent is:

A) 3 cm
B) 4 cm
C) 5 cm
D) 6 cm

CBSE 2013, Delhi (30/1/1)

12. In figure, a circle with centre O is inscribed in a quadrilateral $ABCD$ such that, it touches the sides BC, AB, AD and CD at points P, Q, R and S respectively. If $AB = 29 \text{ cm}, AD = 23 \text{ cm}, \angle B = 90^\circ$ and $DS = 5 \text{ cm}$, then the radius of the circle (in cm) is:

A) 11
B) 18
C) 6
D) 15

CBSE 2013, Delhi (30/1/1)

13. In figure, the sides AB, BC and CA of a triangle ABC, touch a circle at P, Q and R respectively. If $PA = 4 \text{ cm}, BP = 3 \text{ cm}$ and $AC = 11 \text{ cm}$, then the length of BC (in cm) is:

A) 11
B) 10
C) 14
D) 15

CBSE 2012, Delhi (30/1/1)

14. In figure, a circle touches the side DF of $\triangle EDF$ at H and touches ED and EF produced at K and M respectively. If $EK = 9 \text{ cm}$, then the perimeter of $\triangle EDF$ (in cm) is:

A) 18
B) 13.5
C) 12
D) 9

CBSE 2012, Delhi (30/1/1)

15. In figure, PQ and PR are tangents to a circle with centre A. If $\angle QPA = 27^\circ$, then $\angle QAR$ equals.

A) 63°
B) 153°
C) 126°
D) 117°

CBSE 2012, Foreign (30/2/1)
16. In figure, AB and AC are tangents to a circle with centre O and radius 8 cm. If $OA = 17$ cm, then the length of AC (in cm) is

A) $\sqrt{353}$ B) 15 C) 9 D) 25

CBSE 2012, Foreign (30/2/1)

17. From a point Q, 13 cm away from the centre of a circle, the length of tangent PQ to the circle is 12 cm. The radius of the circle (in cm) is.

A) 25 B) $\sqrt{313}$ C) 5 D) 1

CBSE 2012, Outside Delhi (30/1)

18. In figure, AP and AQ and BC are tangents to the circle if $AB = 5$ cm, $AC = 6$ cm and $BC = 4$ cm, then the length of AP (in cm) is

A) 7.5 B) 15 C) 10 D) 9

CBSE 2012, Outside Delhi (30/1)

19. In figure, O is the centre of a circle, AB is a chord and AT is the tangent at A. If $\angle AOB = 100^\circ$, then $\angle BAT$ is equal to

A) 100° B) 40° C) 50° D) 90°

CBSE 2011, Delhi (30/1/1)

20. In figure, PA and PB are tangents to the circle with centre O. If $\angle APB = 60^\circ$, then $\angle OAB$ is

A) 30° B) 60° C) 90° D) 15°

CBSE 2011, Delhi (30/1/1)

21. In figure, point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm. Then the radius of the circle is

A) 25 cm B) 26 cm C) 24 cm D) 10 cm

CBSE 2011, Foreign (30/2/1)
22. In the figure, TP and TQ are two tangents to a circle with centre O such that $\angle POQ = 110^\circ$. Then $\angle PTQ$ is equal to

A) 55°
B) 70°
C) 110°
D) 90°

CBSE 2011, Foreign (30/2/1)

23. In the figure, O is the centre of a circle, PQ is a chord and PT is the tangent at P. If $\angle POQ = 70^\circ$, then $\angle TPQ$ is equal to

A) 55°
B) 70°
C) 45°
D) 35°

CBSE 2011, Outside Delhi (30/1)

24. In the figure, AB and AC are tangents to the circle with centre O such that $\angle BAC = 40^\circ$. Then $\angle BOC$ is equal to

A) 40°
B) 55°
C) 140°
D) 150°

CBSE 2011, Outside Delhi (30/1)

25. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that $OQ = 13 \text{ cm}$. Find the length PQ.

CBSE 2010, Foreign (30/2/1)

26. In Figure, CP and CQ are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If $CP = 11 \text{ cm}$, and $BC = 7 \text{ cm}$, then find the length of BR.

CBSE 2009, Delhi (30/1/1)

27. In Figure, $\triangle ABC$ is circumscribing a circle. Find the length of BC.

CBSE 2009, Outside Delhi (30/1)

28. Two tangents TP and TQ are drawn from an external point T to a circle with centre O, as shown in Fig. If they are inclined to each other at an angle of 100° then what is the value of $\angle POQ$?

CBSE Sample Paper III 2008

29. What is the distance between two parallel tangents of a circle of the radius 4 cm?

CBSE Sample Paper II 2008
30. The length of tangent from a point A at a distance of 5 cm from the centre of the circle is 4 cm. What will be the radius of the circle?

31. In the figure given below, PA and PB are tangents to the circle drawn from an external point P. CD is a third tangent touching the circle at Q. If $PB = 10$ cm, and $CQ = 2$ cm, what is the length of PC?

\[P \quad A \quad B \quad Q \quad D \]

2 Marks:

1. Prove that the tangents drawn at the end points of a chord of a circle make equal angles with the chord.

2. A circle touches all the four sides of a quadrilateral $ABCD$. Prove that $AB + CD = BC + DA$.

3. Using the figure given below, prove that $AR = \frac{1}{2} \text{(perimeter of triangle } ABC)$.

4. In the given figure, common tangents AB and CD to the two circles intersect at E. Prove that $AB = CD$.

5. In the given figure, if $AB = AC$, prove that $BE = EC$.

6. Prove that tangents drawn at the ends of a diameter of a circle are parallel to each other.

7. In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If $PA = 12$ cm, $QC = QD = 3$ cm, then find $PC + PD$.

\[A \quad C \quad Q \quad O \quad B \quad D \]
8. In figure, from a point P, two tangents PT and PS are drawn to a circle with centre O such that ∠SPT = 120°. Prove that OP = 2PS.

9. In figure, 3 are two concentric circles of radii 6 cm and 4 cm with centre O. If A.P. is a tangent to the larger circle and BP to the smaller circle and length of AP is 8 cm, find the length of BP.

10. In figure, a circle is inscribed in a ΔABC, such that it touches the sides AB, BC and CA at points D, E and F respectively. If the lengths of sides AB, BC and CA are 12 cm, 8 cm and 10 cm respectively, find the lengths of AD, BE and CF.

11. In figure, AP and BP are tangents to a circle with centre O, such that AP = 5 cm and ∠APB = 60°. Find the length of chord AB.

12. In figure, a quadrilateral ABCD is drawn to circumscribe a circle. With centre O, in such a way that the sides AB, BC, CD and DA touch the circle at the points P, Q, R and S respectively. Prove that AB + CD = BC + DA.

13. In figure, from an external point P, two tangents PT and PS are drawn to a circle with centre O and radius r. If OP = 2r, show that ∠OTS = ∠OST = 30°.

14. In figure, AB is the diameter of a circle with centre O and AT is a tangent. If ∠AOQ = 58°, find ∠ATQ.
15. From a point T outside a circle of centre O, tangents TP and TQ are drawn to the circle. Prove that OT is the right bisector of line segment PQ.

CBSE 2015, Delhi (30/1/1)

16. Two concentric circles of radii a and b ($a > b$) are given. Find the length of the chord of the larger circle which touches the smaller circle.

CBSE 2015, Foreign (30/2/1)

17. In Figure, O is the centre of a circle. PT and PQ are tangents to the circle from an external point P. If $\angle TPQ = 70^\circ$, find $\angle TRQ$.

CBSE 2015, Foreign (30/2/1)

18. In figure, PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T. Find the lengths of TP and TQ.

CBSE 2015, Foreign (30/2/1)

19. In figure, two tangents RQ and RP are drawn from an external point R to the circle with centre O. If $\angle PRQ = 120^\circ$, then prove that $OR = PR + RQ$.

CBSE 2015, Outside Delhi (30/1)

20. In figure, a triangle ABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of $\triangle ABC$ is 54 cm^2, then find the lengths of sides AB and AC.

CBSE 2015, Outside Delhi (30/1)

21. The incircle of an isosceles triangle ABC, in which $AB = AC$, touches the sides BC, CA and AB at D, E and F respectively. Prove that $BD = DC$.

CBSE 2014, Foreign (30/2), (30/3)

22. Prove that the parallelogram circumscribing a circle is a rhombus.

CBSE 2013, Delhi (30/1/1)

23. In figure, a circle inscribed in triangle ABC touches sides AB, BC and AC at points D, E and F respectively. If $AB = 12 \text{ cm}, BC = 8 \text{ cm}$ and $AC = 10 \text{ cm}$, then find the lengths of AD, BE and CF.

CBSE 2013, Delhi (30/1/1)

24. In figure, an isosceles triangle ABC, with $AB = AC$, circumscribes a circle. Prove that the point of contact P bisects the base BC.

CBSE 2012, Delhi (30/1/1)
25. In figure, the chord AB of the larger of the two concentric circles, with centre O, touches the smaller circle at C. Prove that $AC = CB$.

26. Tangents PA and PB are drawn from an external point P to two concentric circles with centre O and radii $8\,\text{cm}$ and $5\,\text{cm}$ respectively, as shown in figure. If $AP = 15\,\text{cm}$, then find the length of BP.

27. In figure, a right triangle ABC, circumscribes a circle of radius r. If AB and BC are of lengths $8\,\text{cm}$ and $6\,\text{cm}$ respectively, find the value of r.

28. The incircle of an isosceles triangle ABC, with $AB = AC$, touches the sides AB, BC and CA at D, E and F respectively. Prove that E bisects BC.

29. Prove that in two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.

30. Two concentric circles are of radii $7\,\text{cm}$ and $r\,\text{cm}$ respectively, where $r > 7$. A chord of the larger circle, of length $48\,\text{cm}$, touches the smaller circle. Find the value of r.

31. In figure, a circle touches all the four sides of a quadrilateral $ABCD$ whose sides are $AB = 6\,\text{cm}$, $BC = 9\,\text{cm}$ and $CD = 8\,\text{cm}$. Find the length of side AD.

32. If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.

33. In figure a triangle ABC is drawn to circumscribe a circle of radius $3\,\text{cm}$, such that the segments BD and DC into which BC is divided by the point of contact D are of lengths $6\,\text{cm}$ and $8\,\text{cm}$ respectively. Find the side AB if the area of $\triangle ABC = 63\,\text{cm}^2$.

34. Two tangents PA and PB are drawn to a circle with centre O from an external point P. Prove that $\angle APB = 2\angle OAB$.
3 Marks:

1. The incircle of \(\triangle ABC \) touches the sides \(BC, CA \) and \(AB \) at \(D, E, \) and \(F \) respectively. If \(AB = AC \), prove that \(BD = CD \).

2. Prove that the intercept of a tangent between two parallel tangents to a circle subtends a right angle at the centre of the circle.

3. In the given figure, \(PA \) and \(PB \) are tangents to a circle from an external point \(P \) such that \(PA = 4 \, \text{cm} \) and \(\angle BAC = 135^\circ \). Find the length of chord \(AB \).

4. Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

5. Two tangents \(TP \) and \(TQ \) are drawn to a circle with centre \(O \) from an external point \(T \). Prove that \(\angle PTQ = 2 \angle OPQ \).

6. In the given figure, the radii of two concentric circles are \(13 \, \text{cm} \) and \(8 \, \text{cm} \). \(AB \) is diameter of the bigger circle. \(BD \) is the tangent to the smaller circle touching it at \(D \). Find the length \(AD \).

7. \(P \) & \(Q \) are centres of circles of radii \(9 \, \text{cm} \) and \(2 \, \text{cm} \) respectively. \(PQ = 17 \, \text{cm} \). \(R \) is the centre of the circle of radius \(x \, \text{cm} \) which touches the above circle externally. Given that angle \(PRQ \) is \(90^\circ \). Write an equation in \(x \) and solve it.

8. In Figure, a circle is inscribed in \(\triangle ABC \) having sides \(BC = 8 \, \text{cm}, AC = 10 \, \text{cm} \) and \(AB = 12 \, \text{cm} \) as shown in figure. Find \(AD, BE \) and \(CF \).

9. Two tangents \(TP \) and \(TQ \) are drawn to a circle with centre \(O \) from an external point \(T \). Prove that \(\angle PTQ = 2 \angle OPQ \).

10. In figure, \(XY \) and \(X'Y' \) are two parallel tangents to a circle with centre \(O \) and another tangent \(AB \) with point of contact \(C \) intersects \(XY \) at \(A \) and \(X'Y' \) at \(B \). Prove that \(\angle AOB = 90^\circ \).
11. In figure, a circle is inscribed in a triangle PQR with $PQ = 10 \text{ cm}$, $QR = 8 \text{ cm}$ and $PR = 12 \text{ cm}$. Find the lengths QM, RN and PL.

12. Prove that the parallelogram circumscribing a circle is a rhombus.

13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

14. In figure, a triangle ABC is drawn to circumscribe a circle of radius 2 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 4 cm and 3 cm respectively. If area of $\triangle ABC = 21 \text{ cm}^2$, then find the lengths of sides AB and AC.

15. In figure, a triangle ABC is drawn to circumscribe a circle of radius 10 cm such that the segments BP and PC into which BC is divided by the point of contact P, are of lengths 15 cm and 20 cm respectively. If the area of $\triangle ABC = 525 \text{ cm}^2$, then find the lengths of sides AB and AC.

16. In figure, a triangle PQR is drawn to circumscribe a circle of radius 6 cm such that the segments QT and TR into which QR is divided by the point of contact T, are of lengths 12 cm and 9 cm respectively. If the area of $\triangle PQR = 189 \text{ cm}^2$, then find the lengths of sides PQ and PR.

17. Prove that a parallelogram circumscribing a circle is a rhombus.

18. A circle touches the side BC of $\triangle ABC$ at a point P and touches AB and AC when produced at Q and R respectively. Show that

$$AQ = \frac{1}{2}(\text{Perimeter of } \triangle ABC)$$

4 Marks:

1. Prove that the lengths of two tangents drawn from an external point to a circle are equal.

2. In given figure, XY and PQ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and PQ at B. Prove that $\angle AOB = 90^\circ$.

4 Marks:
3. The radii of two concentric circles are 13 cm and 8 cm. AB is a diameter of the bigger circle and BD is tangent to the smaller circle touching it at D and intersecting the larger circle at P, on producing. Find the length of AP.

CBSE Sample Paper 2017

4. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

CBSE 2014, Outside Delhi (30/1), (30/2), (30/3)

5. In figure, AB is a chord of a circle, with centre O, such that AB = 16 cm and radius of circle is 10 cm. Tangents at A and B intersect each other at P. Find the length of PA.

CBSE 2016, Foreign (30/2/1)

6. Prove that the lengths of the tangents drawn from an external point to a circle are equal. Using the above theorem, prove that AB + CD = AD + BC, if a quadrilateral ABCD is drawn to circumscribe a circle. CBSE Sample Paper 2016

7. In figure, O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects circle at E. If AB is a tangent to the circle at E, find the length of AB, where TP and TQ are two tangents to the circle.

CBSE 2016, Delhi (30/1/1)

8. In figure, two equal circles, with centres O and O′, touch each other at X. OO′ produced meets the circle with centre O′ at A. AC is tangent to the circle with centre O, at the point C. O′D is perpendicular to AC. Find the value of \(\frac{DO}{CO} \).

CBSE 2016, Outside Delhi (30/1)

9. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

CBSE 2015, Delhi (30/1/1)

10. In figure, tangents PQ and PR are drawn from an external point P to a circle with centre O, such that \(\angle RPQ = 30^\circ \). A chord RS is drawn parallel to the tangent PQ. Find \(\angle RQS \).

CBSE 2015, Delhi (30/1/1)

11. Prove that the lengths of the tangents drawn from an external point to a circle are equal. CBSE 2015, Outside Delhi (30/1)

12. Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc. CBSE 2015, Outside Delhi (30/1)

13. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact. CBSE 2015, Foreign (30/2/1) CBSE 2014, Outside Delhi (30/1), (30/2), (30/3)

14. In figure, O is the centre of the circle and TP is the tangent to the circle from an external point T. If \(\angle PBT = 30^\circ \), prove that \(BA : AT = 2 : 1 \).

CBSE 2015, Foreign (30/2/1)
15. In Figure, \(PQ \) is a chord of length 16 cm, of a circle of radius 10 cm. The tangents at \(P \) and \(Q \) intersect at a point \(T \). Find the length of \(TP \).

16. Prove that opposite sides of a quadrilateral circumscribing a circle sub tend supplementary angles at the centre of the circle.

17. In Figure a triangle \(ABC \) is drawn to circumscribe a circle of radius 4 cm, such that the segments \(BD \) and \(DC \) are of lengths 8 cm and 6 cm respectively. Find the sides \(AB \) and \(AC \).

18. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

19. If figure, \(l \) and \(m \) are two parallel tangents to a circle with centre \(O \), touching the circle at \(A \) and \(B \) respectively. Another tangent at \(C \) intersects the line \(l \) at \(D \) and \(m \) at \(E \). Prove that \(\angle DOE = 90^\circ \).

20. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

21. A quadrilateral \(ABCD \) is drawn to circumscribe a circle. Prove that \(AB + DC = AD + BC \).

22. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

23. Prove that the length of tangents drawn from an external point to a circle are equal.

24. Prove that the lengths of tangents drawn from an external point to a circle are equal.

25. Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

26. Prove that the lengths of the tangents drawn from an external point to a circle are equal.

Using the above theorem prove that:

If quadrilateral \(ABCD \) is circumscribing a circle, then
\[AB + CD = AD + BC. \]

27. Prove that the lengths of tangents drawn from an external point to a circle are equal.

Using the above, prove the following:

\(ABC \) is an isosceles triangle in which \(AB = AC \), circumscribed about a circle, as shown in Fig. Prove that the base is bisected by the point of contact.