Question Booklet Version

33

SUBJECT: PAPER II - PHYSICS & CHEMISTRY

Instruction to Candidates

- **1.** This question booklet contains 100 Objective Type Questions (Single Best Response Type) in the subjects of Physics (50) and Chemistry (50).
- 2. The question paper and OMR (Optical Mark Reader) Answer Sheets are issued to examinees separately at the beginning of the examination session.
- 3. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 4. Candidate should carefully read the instructions printed on the Question Booklet and Answer Sheet and make the correct entries on the Answer Sheet. As Answer Sheets are designed to suit the OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark appropriate entries/answers correctly. Special care should be taken to fill QUESTION BOOKLET VERSION, SERIAL No. and Roll No. accurately. The correctness of entries has to be cross-checked by the invigilators. The candidate must sign on the Answer Sheet and Question Booklet.
- **5.** Read each question carefully.
- **6.** Determine the correct answer from out of the four available options given for each question.
- **7.** Fill the appropriate circle completely like this ●, for answering the particular question, with Black ink ball point pen only, in the OMR Answer Sheet.
- 8. Each answer with correct response shall be awarded **one (1) mark**. There is **no Negative Marking**. If the examinee has marked two or more answers or has done scratching and overwriting in the Answer Sheet in response to any question, or has marked the circles inappropriately e.g. half circle, dot, tick mark, cross etc, mark/s shall NOT be awarded for such answer/s, as these may not be read by the scanner. Answer sheet of each candidate will be evaluated by computerized scanning method only (Optical Mark Reader) and there will not be any manual checking during evaluation or verification.
- **9.** Use of whitener or any other material to erase/hide the circle once filled is not permitted. Avoid overwriting and/or striking of answers once marked.
- 10. Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the Answer Sheet.
- 11. The required mathematical tables (Log etc.) are provided within the Question Booklet.
- **12.** Immediately after the prescribed examination time is over, the Answer sheet is to be returned to the Invigilator. Confirm that both the Candidate and Invigilator have signed on question booklet and answer sheet.
- 13. No candidate is allowed to leave the examination hall till the examination session is over.

- 1. The frequencies for series limit of Balmer and Paschen series respectively are ' v_1 ' and ' v_3 '. If frequency of first line of Balmer series is ' v_2 ' then the relation between ' v_1 ', ' v_2 ', and ' v_3 ' is
 - (A) $v_1 v_2 = v_3$
- (B) $v_1 + v_3 = v_2$
- (C) $v_1 + v_2 = v_3$
- (D) $v_1 v_3 = 2v_1$

1. (A)

$$V = n\lambda, \frac{1}{\lambda} = \frac{n}{v}$$

$$\frac{1}{\lambda} = R \left(\frac{1}{P^2} - \frac{1}{n^2} \right)$$

$$\nu = Rc \left(\frac{1}{P^2} - \frac{1}{n^2} \right) \ \ \text{series limit } n = \infty$$

$$v_2 = Rc\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = Rc\left(\frac{1}{4} - \frac{1}{9}\right)$$

$$v_1 = Rc \left(\frac{1}{2^2}\right) = \frac{Rc}{4}$$

$$v_3 = Rc \left(\frac{1}{3^2}\right) = \frac{Rc}{9}$$

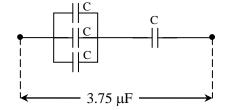
$$\therefore \quad v_1 - v_3 = \operatorname{Rc}\left(\frac{1}{4} - \frac{1}{9}\right)$$

$$\therefore \quad \nu_1 - \nu_3 = \nu_2$$

$$\therefore \quad \mathbf{v}_1 - \mathbf{v}_2 = \mathbf{v}_3$$

- 2. When three capacitors of equal capacities are connected in parallel and one of the same capacity is connected in series with its combination. The resultant capacity is $3.75 \, \mu F$. The capcity of each capacitor is
 - (A) 5 μF
- (B) 6 μF
- $(C) 7 \mu F$
- (D) 8 µF

2. (A)


$$C_{eq} = \frac{3C \times C}{3C + C}$$

$$C_{eq} = \frac{3C^2}{4C}$$

$$C_{eq} = \frac{3C}{4}$$

$$\therefore C = \frac{4C_{eq}}{3} = \frac{4 \times 3.75}{3}$$

$$\therefore$$
 C = 4 × 1.25 = 5.00 µF

- 3. Sensitivity of moving coil galvanometer is 's'. If a shunt of $\left(\frac{1}{8}\right)^{th}$ of the resistance of galvanometer is connected to moving coil galvanometer, its sensitivity becomes
 - (A) $\frac{s}{2}$
- (B) $\frac{s}{6}$
- (C) $\frac{s}{9}$
- (D) $\frac{s}{12}$

3. (C)

$$S = \frac{G}{8}$$
, $S = \frac{G}{n-1}$

$$\frac{G}{8} = \frac{G}{n-1}$$

$$\therefore$$
 8 = n -1

$$n = 8 + 1 = 9$$

Since range of galvanometer in increased nine times its sensitivity reduces to $\frac{1}{9}$.

$$\therefore \mathbf{S}' = \frac{\mathbf{s}}{9}$$

- **4.** Two unknown resistances are connected in two gaps of a meter-bridge. The null point is obtained at 40 cm from left end. A 30 Ω resistance is connected in series with the smaller of the two resistances, the null point shifts by 20 cm to the right end. The value of smaller resistance in Ω is
 - (A) $\hat{1}2$
- (B) 24
- (C) 36
- (D) 48

4. (B)

$$\ell_x = 40 \text{ cm}, \ \ell_R = 60 \text{ cm}$$

$$\frac{x}{R} = \frac{\ell_x}{\ell_R} = \frac{40}{60} = \frac{2}{3} \qquad \dots (1)$$

$$\therefore \frac{x+30}{R} = \frac{60}{40} = \frac{3}{2}$$

$$\therefore \frac{x+30}{R} = \frac{3}{2}$$

$$\therefore 2(X+30) \Rightarrow 3R$$

$$R = \frac{2(x+30)}{3} \dots (2$$

From (1) & (2),

$$\frac{X}{2\frac{\left(x+30\right)}{3}} = \frac{2}{3}$$

$$\frac{3x}{2(x+30)} = \frac{2}{3}$$

$$9x = 4x + 120$$

$$5x = 120 \Rightarrow x = 24 \Omega$$

- 5. In Fraunhofer diffraction pattern, slit width is 0.2 mm and screen is at 2 m away from the lens. If wavelength of light used is 5000 Å then the distance between the first minimum on either side of the central maximum is (θ is small and measured in radian)
 - (A) 10^{-1} m
- (B) 10^{-2} m
- (C) 2×10^{-2} m
- (D) 2×10^{-1} m

5. (B)

$$a = 0.2 \times 10^{-3} \text{m}, D = 2 \text{m}$$

$$\lambda = 5 \times 10^{-7} \,\mathrm{m}$$

$$x = \frac{\lambda D}{a}$$
 = $\frac{5 \times 10^{-7} \times 2}{0.2 \times 10^{-3}}$

$$\therefore x = \frac{5 \times 10^{-7}}{10^{-4}} = 5 \times 10^{-7+4} \text{ m}$$

$$\therefore x = 5 \times 10^{-3} \text{ m}$$

Distance between 1st minima on either side

$$= 5 \times 10^{-3} + 5 \times 10^{-3}$$
$$= 10 \times 10^{-3} = 10^{-2} \text{ m}$$

- 6. In series LCR circuit $R=18~\Omega$ and impedance is 33 Ω . An r.m.s. voltage 220 V is applied across the circuit. The true power consumed in a.c. circuit is
- (A) 220 W
- (B) 400 W
- (C) 600 W
- (D) 800 W

6. (D)

$$\begin{split} P &= e_{rms}.i_{rms}.cos \ \varphi \\ &= e_{rms}.\frac{e_{rms}}{z}.\frac{R}{z} \\ &= \frac{220 \times 220 \times 18}{33 \times 33} \\ &= \frac{20 \times 20 \times 18}{3 \times 3} \\ &= 20 \times 20 \times 2 \\ &= 800 \ W \end{split}$$

- 7. Two parallel plate air capacitors of same capacity 'C' are connected in series to a battery of emf 'E'. Then one of the capacitors is completely filled with dielectric material of constant 'K'. The change in the effective capacity of the series combination is

- (A) $\frac{C}{2} \left\lfloor \frac{K-1}{K+1} \right\rfloor$ (B) $\frac{2}{C} \left\lceil \frac{K-1}{K+1} \right\rceil$ (C) $\frac{C}{2} \left\lceil \frac{K+1}{K-1} \right\rceil$ (D) $\frac{C}{2} \left\lceil \frac{K-1}{K+1} \right\rceil^2$

$$\frac{1}{C_1} = \frac{1}{C} + \frac{1}{C} = \frac{2}{C} \Longrightarrow C_1 = \frac{C}{2}$$

$$\frac{1}{C_2} = \frac{1}{C} + \frac{1}{KC}$$

$$\frac{1}{C_2} = \frac{1}{C} \left[1 + \frac{1}{K} \right]$$

$$\therefore C_2 = \frac{C}{\left(1 + \frac{1}{K}\right)} = \frac{CK}{(K+1)}$$

$$\Delta C = \frac{CK}{(K+1)} - \frac{C}{2} = C \left[\frac{K}{K+1} - \frac{1}{2} \right]$$
$$= C \left[\frac{2K - K - 1}{2(K+1)} \right] = \frac{C}{2} \left[\frac{K - 1}{K+1} \right]$$

- 8. The polarising angle for transparent medium is ' θ ', 'v' is the speed of light in that medium. Then the relation between ' θ ' and 'v' is (c = velocity of light in air)

- (A) $\theta = \tan^{-1} \left(\frac{\mathbf{v}}{\mathbf{c}} \right)$ (B) $\theta = \cot^{-1} \left(\frac{\mathbf{v}}{\mathbf{c}} \right)$ (C) $\theta = \sin^{-1} \left(\frac{\mathbf{v}}{\mathbf{c}} \right)$ (D) $\theta = \cos^{-1} \left(\frac{\mathbf{v}}{\mathbf{c}} \right)$
- **8.** (B)

$$\tan \theta = \mu = \frac{C}{V}$$

$$\therefore \cot \theta = \frac{V}{C}$$

$$\therefore \theta = \cot^{-1}\left(\frac{V}{C}\right)$$

- Two identical light waves having phase difference '\phi' propagate in same direction. When they superpose, the intensity of resultant wave is proportional to
 - (A) $\cos^2 \phi$
- (B) $\cos^2 \frac{\phi}{2}$
- (C) $\cos^2 \frac{\phi}{3}$ (D) $\cos^2 \frac{\phi}{4}$

For two identical light waves

$$I_R = 4I \cos^2 \frac{\phi}{2}$$

$$\therefore I_{\rm R} \propto \cos^2 \frac{\phi}{2}$$

- 10. For a transistor, α_{dc} and β_{dc} are the current ratios, then the value of $\frac{\beta_{dc} \alpha_{dc}}{\alpha_{dc} \cdot \beta_{dc}}$ is
 - (A) 1
- (B) 1.5

10. (A)

$$\beta_{dc} = \frac{\alpha_{dc}}{1 - \alpha_{dc}} \Longrightarrow (1 - \alpha_{dc}) = \frac{\alpha_{dc}}{\beta_{dc}}$$

Test Paper - Physcis & Chemistry

$$\begin{split} \frac{\beta_{dc} - \alpha_{dc}}{\alpha_{dc} \cdot \beta_{dc}} &= \frac{\beta_{dc} \left(1 - \frac{\alpha_{dc}}{\beta_{dc}} \right)}{\alpha_{dc} \cdot \beta_{dc}} \\ &= \frac{1 - \frac{\alpha_{dc}}{\beta_{dc}}}{\alpha_{dc}} = \frac{1 - \left(1 - \alpha_{dc} \right)}{\alpha_{dc}} \\ &= \frac{1 - 1 + \alpha_{dc}}{\alpha_{dc}} = 1 \end{split}$$

- 11. A radioactive element has rate of disintegration 10,000 disintegrations per minute at a particular instant. After four minutes it becomes 2500 disintegrations per minute. The decay constant per minute is
 - (A) $0.2 \log_{e}^{2}$
- (B) $0.5 \log_{0}^{2}$
- (C) $0.6 \log_{e}^{2}$
- (D) $0.8 \log_{3}^{2}$

11. (B)

$$\frac{N}{N_0} = e^{-\lambda t}$$

$$\therefore \quad \frac{2500}{10000} = e^{-\lambda \times 4}$$

$$\therefore$$
 $e^{4\lambda} = 4$

$$\therefore 4\lambda = \log_e 4$$

$$\therefore 4\lambda = \log_e 2^2$$

$$\therefore 4\lambda = \log_e 2^2$$

$$\therefore 4\lambda = 2 \log_e 2$$

$$\therefore \quad \lambda = \frac{2}{4} \log_e 2$$

$$\lambda = 0.5 \log_e 2$$

- 12. When the same monochromatic ray of light travels through glass slab and through water, the number of waves in glass slab of thickness 6 cm is same as in water column of height 7 cm. If refractive index of glass is 1.5 then refractive index of water is
- (A) 1.258
- (B) 1.269
- (C) 1.286
- (D) 1.310

12. (C)

No. of waves is glass slab = No. of waves in water column

$$\therefore$$
 $\mu_g.h_g = \mu_w.h_w$

$$\therefore \quad \mu_w = \frac{\mu_g \cdot h_g}{h_w} = \frac{1.5 \times 6}{7}$$

$$\therefore \quad \mu_{\rm w} = \frac{9}{7} = 1.286$$

13. If the electron in hydrogen atom jumps from second Bohr orbit to ground state and difference between energies of the two states is radiated in the form of photons. If the work function of the material is 4.2 eV then stopping potential is

[Energy of electron in n^{th} orbit = $-\frac{13.6}{n^2}$ eV]

- (A) 2 eV
- (B) 4 eV
- (C) 6 eV
- (D) 8 eV

13. (C)

$$E = \frac{13.6}{1} - \frac{13.6}{2^2}$$

$$E = 13.6 \left\lceil \frac{4-1}{4} \right\rceil = 13.6 \times \frac{3}{4}$$

$$\therefore$$
 E = 10.2 eV (= hv)

i.e.
$$hv = 10.2 \text{ eV}$$

$$h\nu = \phi_0 + eV_s$$

$$\therefore$$
 10.2 eV = 4.2 eV + eV_s

$$\therefore$$
 6 eV = eV_s

$$\therefore$$
 $V_s = 6V$

14. The magnetic moment of electron due to orbital motion is proportional to

(n = principal quantum numbers)

(A)
$$\frac{1}{n^2}$$

(B)
$$\frac{1}{n}$$

(C)
$$n^2$$

14. (D)

Magnetic moment $(M_0) = \frac{e}{2m_0} \times L_0$

$$\therefore$$
 $L_0 \propto n$

$$M_0 \propto n$$

15. Photodiode is a device

- (A) which is always operated in reverse bias
- (B) which is always operated in forward bias
- (C) in which photo current is independent of intersity of incident radiation
- (D) which may be operated in forward or reverse bias.
- **15.** (A)

Photodiode is a device always operated in reverse bias.

16. A wheel of moment of inertia 2 Kg m² is rotating about an axis passing through centre and perpendicular to its plane at a speed 60 rad/s. Due to friction, it comes to rest in 5 minutes. The angular momentum of the wheel three minutes before it stops rotating is

(A)
$$24 \text{ Kg m}^2/\text{s}$$

(B)
$$48 \text{ Kg m}^2/\text{s}$$

(C)
$$72 \text{ Kg m}^2/\text{s}$$
 (D) $96 \text{ Kg m}^2/\text{s}$

(D)
$$96 \text{ Kg m}^2/s$$

16. (C)

$$I = 2 \text{ kg m}^2$$
, $\omega_0 = 60 \text{ rad/s}$

$$t = 5 \text{ min} = 5 \times 60 = 300 \text{ s}$$

$$\alpha = \frac{0 - 60}{300} = \frac{-60}{300} = \frac{-1}{5} \, rad/s^2$$

for $2 \min (from starting) (2 \min = 120 sec)$

$$\omega = \omega_0 + \alpha t$$

$$=60-\frac{1}{5}\times 120=60-24$$

$$\omega = 36 \text{ rad/s \& L} = I\omega = 2 \times 36 = 72 \text{ kg m}^2\text{/s}$$

17. The equation of the progressive wave is $Y = 3\sin\left[\pi\left(\frac{t}{3} - \frac{x}{5}\right) + \frac{\pi}{4}\right]$ where x and Y are in metre and time

in second. Which of the following is correct?

(A) velocity V = 1.5 m/s

(B) amplitude A = 3 cm

- (C) frequency F = 0.2 Hz
- (D) wavelength $\lambda = 10 \text{ m}$

17. (D)

$$y = 3\sin\left[2\pi\left(\frac{t}{6} - \frac{x}{10}\right) + \frac{\pi}{4}\right]$$

Compare
$$y = A \sin \left[2\pi \left(\frac{t}{T} - \frac{x}{\lambda} \right) + \frac{\pi}{4} \right]$$

x and y are metre

$$\therefore$$
 $\lambda = 10 \text{ m}$

- 18. Two spherical black bodies have radii 'r₁' and 'r₂'. Their surface temperatures are 'T₁' and 'T₂'. If they radiate same power then $\frac{r_2}{r_1}$ is
 - (A) $\frac{T_1}{T_2}$
- (B) $\frac{T_2}{T_2}$
- (C) $\left(\frac{T_1}{T_2}\right)^2$ (D) $\left(\frac{T_2}{T_1}\right)^2$

18. (C)

$$\frac{Q}{t} = \sigma A T^4$$

i.e. power = σAT^4

: for same power

$$\therefore A \propto \frac{1}{T^4}$$

$$\therefore \quad \frac{A_2}{A_1} = \frac{T_1^4}{T_2^4}$$

$$\therefore \quad \frac{4\pi r_2^2}{4\pi r_1^2} \quad = \quad \frac{T_1^4}{T_2^4}$$

$$\therefore \quad \frac{\mathbf{r}_2}{\mathbf{r}_1} = \quad \left(\frac{\mathbf{T}_1}{\mathbf{T}_2}\right)^2$$

- 19. The closed and open organ pipes have same length. When they are vibrating simultaneously in first overtone, produce three beats. The length of open pipe is made $\frac{1}{3}^{rd}$ and closed pipe is made three times the original, the number of beats produced will be

- (C) 17
- (D) 20

19. (C)

For open pipe first overtone $v_1 = \frac{v}{r}$

For closed pipe first overtone $v_1' = \frac{3v}{4I}$

$$\therefore \quad \mathbf{v}_1 - \mathbf{v}_1' = \frac{\mathbf{v}}{\mathbf{L}} - \frac{3\mathbf{v}}{4\mathbf{L}} = 3$$

$$\therefore \quad \frac{v}{4L} = 3$$

$$\therefore \frac{v}{r} = 12$$

When length of open pipe is made $\frac{L}{2}$ the fundamental frequency

$$v = \frac{v}{2\left(\frac{L}{3}\right)} = \frac{3v}{2L}$$

When length of closed pipe is made 3 times, the fundamental frequency

$$v' = \frac{v}{4(3L)} = \frac{v}{12L}$$

Beats produced =
$$v - v'$$

= $\frac{3v}{2L} - \frac{v}{12L}$
= $\frac{17}{12} \cdot \frac{v}{L}$ = $\frac{17}{12} \times 12$

20. A lift mass 'm' is connected to a rope which is moving upward with maximum acceleration 'a'. For maximum safe stress, the elastic limit of the rope is 'T'. The minimum diameter of the rope is (g = gravitational acceleration).

(A)
$$\left[\frac{2m(g+a)}{\pi T}\right]^{\frac{1}{2}}$$

(A)
$$\left\lceil \frac{2m(g+a)}{\pi T} \right\rceil^{\frac{1}{2}}$$
 (B) $\left\lceil \frac{4m(g+a)}{\pi T} \right\rceil^{\frac{1}{2}}$ (C) $\left\lceil \frac{m(g+a)}{\pi T} \right\rceil^{\frac{1}{2}}$ (D) $\left\lceil \frac{m(g+a)}{2\pi T} \right\rceil^{\frac{1}{2}}$

(C)
$$\left[\frac{m(g+a)}{\pi T}\right]^{\frac{1}{2}}$$

(D)
$$\left[\frac{m(g+a)}{2\pi T}\right]^{\frac{1}{2}}$$

The maximum tension in the rope = m(g + a)

Stress in the rope =
$$\frac{m(g+a)}{\pi r^2}$$

$$\therefore T = \frac{m(g+a)}{\pi r^2} = \frac{m(g+a)}{\pi \left(\frac{d}{2}\right)^2}$$

$$T = \frac{4m(g+a)}{\pi d^2}$$

$$d^2 = \frac{4m(g+a)}{\pi T}$$

$$d = \left[\frac{4m(g+a)}{\pi T}\right]^{\frac{1}{2}}$$

21. A solid sphere of mass 2 kg is rolling on a frictionless horizontal surface with velocity 6 m/s. It collides on the free end of an ideal spring whose other end is fixed. The maximum compression produced in the spring will be (Force constant of the spring = 36 N/m).

(A)
$$\sqrt{14}$$
 m

(B)
$$\sqrt{2.8}$$
 m

(C)
$$\sqrt{1.4}$$
 m

(D)
$$\sqrt{0.7}$$
 m

21. (B)

Kinetic energy of rolling solid sphere

$$= \frac{1}{2} mV^{2} + \frac{1}{2} I\omega^{2}$$

$$= \frac{1}{2} mV^{2} + \frac{1}{2} \times \frac{2}{5} mr^{2} \omega^{2}$$

$$= \frac{1}{2} mV^{2} + \frac{1}{5} mV^{2}$$

$$= \frac{7}{10} mV^{2}$$

The potential energy of the spring on maximum compression x

The potential energy of the
$$= \frac{1}{2}kx^{2}$$

$$\therefore \frac{1}{2}kx^{2} = \frac{7}{10}mV^{2}$$

$$x^{2} = \frac{14}{10}\frac{mV^{2}}{k}$$

$$= \frac{14}{10} \times \frac{2 \times (6)^{2}}{36}$$

$$= 2.8$$

$$\therefore x = \sqrt{2.8} \text{ m}$$

- 22. A flywheel at rest is to reach an angular velocity of 24 rad/s in 8 second with constant angular acceleration. The total angle turned through during this interval is
 - (A) 24 rad
- (B) 48 rad
- (C) 72 rad
- (D) 96 rad

22. (D)

$$\omega_0 = 0$$
, $\omega = 24$ rad/s, $t = 8s$

$$\therefore \quad \alpha = \frac{\omega - \omega_0}{t} = \frac{24}{8} = 3 \text{ rad/s}^2$$

Test Paper – Physcis & Chemistry

$$\theta = \omega_0 t + \frac{1}{2} \alpha t^2$$

$$= 0 + \frac{1}{2} \times 3 \times (8)^2$$

$$= \frac{3 \times 64}{2} = 96 \text{ rad.}$$

- 23. Two uniform wires of the same material are vibrating under the same tension. If the first overtone of the first wire is equal to the second overtone of the second wire and radius of the first wire is twice the radius of the second wire then the ratio of the lengths of the first wire to second wire is
 - (A) $\frac{1}{3}$
- (B) $\frac{1}{4}$
- (C) $\frac{1}{5}$
- (D) $\frac{1}{6}$

23. (A)

Fundamental frequency of the first wire

$$f = \frac{1}{2L_1} \sqrt{\frac{T}{m}} = \frac{1}{2L_1} \sqrt{\frac{T}{\pi r_1^2 \rho}} = \frac{1}{2L_1 r_1} \sqrt{\frac{T}{\pi \rho}}$$

The first overtone $f_1=2f=\frac{2}{2L_1r_1}\sqrt{\frac{T}{\pi\rho}}=\frac{1}{L_1r_1}\sqrt{\frac{T}{\pi\rho}}$

The second overtone of the second wire

$$f_2 = \frac{3}{2L_2 r_2} \sqrt{\frac{T}{\pi \rho}}$$

$$f_1 = f_2$$

$$\frac{1}{L_1 r_2} \sqrt{\frac{T}{\pi \rho}} = \frac{3}{2L_2 r_2} \sqrt{\frac{T}{\pi \rho}}$$

$$\frac{1}{L_1 r_1} \sqrt{\frac{T}{\pi \rho}} = \frac{3}{2L_2 r_2} \sqrt{\frac{T}{\pi \rho}}$$

$$\therefore 3L_1 r_1 = 2L_2 r_2$$

$$\begin{aligned} 3L_{1}r_{1} &= 2L_{2}r_{2} \\ \frac{L_{1}}{L_{2}} &= \frac{2}{3} \cdot \frac{r_{2}}{r_{1}} \\ &= \frac{2}{3} \cdot \frac{r_{2}}{2r_{2}} \\ &= \frac{1}{3} \end{aligned} \qquad [\because r_{1} = 2r_{2}]$$

24. When one end of the capillary is dipped in water, the height of water column is 'h'. The upward force of 105 dyne due to surface tension is balanced by the force due to the weight of water column. The inner circumference of the capillary is

(Surface tension of water = 7×10^{-2} N/m)

- (A) 1.5 cm
- (B) 2 cm
- (C) 2.5 cm
- (D) 3 cm

24. (A)

$$F = 105 \text{ dyne} = 105 \times 10^{-5} \text{ N}, T = 7 \times 10^{-2} \text{ N/m}$$

$$2\pi rT = F$$

$$2\pi r = \frac{F}{T} = \frac{105 \times 10^{-5}}{7 \times 10^{-2}}$$
$$= 15 \times 10^{-3} \text{ m}$$
$$= 1.5 \times 10^{-2} \text{ m}$$
$$= 1.5 \text{ cm}$$

- **25.** For a rigid diatomic molecule, universal gas constant R = nCp where 'Cp' is the molar specific heat at constant pressure and 'n' is a number. Hence n is equal to
 - (A) 0.2257
- (B) 0.4
- $(\hat{C}) 0.2857$
- (D) 0.3557

25. (C)

For rigid diatomic molecule

$$\frac{\mathrm{C_P}}{\mathrm{C_V}} = \frac{7}{5}$$

$$\therefore \quad C_V = \frac{5}{7}C_P$$

$$Also \ C_P - C_V = R$$

$$C_P - \frac{5}{7}C_P = R$$

$$\frac{2}{7}C_P = R$$

$$\therefore \ n = \frac{2}{7} = 0.2857$$

- **26.** An ideal gas has pressure 'P', volume 'V' and absolute temperature 'T'. If 'm' is the mass of each molecule and 'K' is the Boltzmann constant then density of the gas is
 - (A) $\frac{Pm}{KT}$
- (B) $\frac{KT}{Pm}$
- (C) $\frac{Km}{PT}$
- (D) $\frac{PK}{Tm}$

26. (A)

For ideal gas PV = nRT

 $PV = \frac{m'}{M}RT = \frac{m'}{V} \cdot \frac{RT}{M}$ (where m' is the mass of the gas and M molecular weight)

 $\therefore \ P = \frac{\rho RT}{M} \qquad \qquad \text{(where ρ is the density of the gas)}$

 $\therefore \rho = \frac{PM}{RT} = \frac{PM}{NKT}$ (where N is Avogadro number)

 $\therefore \ \rho = \frac{Pm}{KT} \qquad \qquad \text{(where } m = \frac{M}{N} \ = \text{mass of each molecule)}$

- **27.** A big water drop is formed by the combination of 'n' small water drops of equal radii. The ratio of the surface energy of 'n' drops to the surface energy of big drop is
 - (A) $n^2 : 1$
- (B) n:1
- (C) $\sqrt{n}:1$
- (D) $\sqrt[3]{n}:1$

27. (D)

Volume of big drop = n(Volume of small drop)

$$\frac{4}{3}\pi R^3 = n \cdot \frac{4}{3}\pi r^3$$

$$R^3 = nr^3$$

$$R = n^{\frac{1}{3}} \cdot r$$

 E_2 = Surface energy of n drops = $n \times 4\pi r^2 \times T$

 $E_1 = Surface energy of big drop = 4\pi R^2 T$

$$\therefore \frac{E_2}{E_1} = \frac{nr^2}{R^2} = \frac{nr^2}{(n^{\frac{1}{3}} \cdot r)^2} = \frac{nr^2}{n^{\frac{2}{3}} \cdot r^2} = n^{\frac{1}{3}}$$
$$= \sqrt[3]{n} : 1$$

- **28.** The ratio of binding energy of a satellite at rest on earth's surface to the binding energy of a satellite of same mass revolving around the earth at a height 'h' above the earth's surface is (R = radius of the earth).
 - (A) $\frac{2(R+h)}{R}$
- (B) $\frac{R+h}{2R}$
- (C) $\frac{R+h}{R}$
- (D) $\frac{R}{R+h}$

28. (A)

Binding energy on the surface of the earth

$$E_1 = \frac{GMm}{R}$$

Binding energy of revolving satellite

Test Paper – Physcis & Chemistry

$$E_2 = \frac{GMm}{2(R+h)}$$

$$\therefore \quad \frac{E_1}{E_2} = \frac{2(R+h)}{R}$$

- 29. A particle performing S.H.M. starts from equilibrium position and its time period is 16 seconds. After 2 seconds its velocity is π m/s. Amplitude of oscillation is $\left(\cos 45^{\circ} = \frac{1}{\sqrt{2}}\right)$
 - (A) $2\sqrt{2}$ m
- (B) $4\sqrt{2}$ m
- (C) $6\sqrt{2}$ m
- (D) $8\sqrt{2}$ m

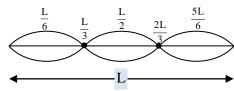
29. (D)

Displacement of the particle $= x = A \sin \omega t$

Velocity of the particle = $v = \frac{dx}{dt} = A\omega\cos\omega t$

$$v = \pi \text{ m/s}, T = 16 \text{ s}, \ \omega = \frac{2\pi}{T} = \frac{2\pi}{16} = \frac{\pi}{8} \text{ rad/s}$$

$$\therefore \quad \pi = A \times \frac{\pi}{8} \times \cos \frac{\pi}{8} \times 2$$


$$1 = \frac{A}{8} \cos \frac{\pi}{4} = \frac{A}{8} \cdot \frac{1}{\sqrt{2}}$$

$$\therefore$$
 A = $8\sqrt{2}$ m

- 30. In sonometer experiment, the string of length 'L' under tension vibrates in second overtone between two bridges. The amplitude of vibration is maximum at
 - (A) $\frac{L}{3}, \frac{2L}{3}, \frac{5L}{6}$
- (B) $\frac{L}{8}, \frac{L}{4}, \frac{L}{2}$
- (C) $\frac{L}{2}, \frac{L}{4}, \frac{L}{6}$ (D) $\frac{L}{6}, \frac{L}{2}, \frac{5L}{6}$

30. (D)

String vibrating in second overtone:

- 31. The depth 'd' at which the value of acceleration due to gravity becomes $\frac{1}{n}$ times the value at the earth's surface is (R = radius of earth)

- (A) $d = R\left(\frac{n}{n-1}\right)$ (B) $d = R\left(\frac{n-1}{2n}\right)$ (C) $d = R\left(\frac{n-1}{n}\right)$ (D) $d = R^2\left(\frac{n-1}{n}\right)$
- **31.** (C)

A a depth d we have

$$g' = g\left(1 - \frac{d}{R}\right)$$

$$g'=\frac{g}{n}$$

$$\frac{g}{n} = g \left(1 - \frac{d}{R} \right)$$

$$\therefore \frac{1}{n} = 1 - \frac{d}{R}$$

$$\therefore \frac{d}{R} = 1 - \frac{1}{n} = \frac{n-1}{n}$$

$$d = R\left(\frac{n-1}{n}\right)$$

- 32. A particle is performing S.H.M. starting from extreme position. Graphical representation shows that, between displacement and acceleration, there is a phase difference of
 - (A) 0 rad
- (B) $\frac{\pi}{4}$ rad
- (C) $\frac{\pi}{2}$ rad
- (D) π rad

32. (D)

- 33. The fundamental frequency of an air column in a pipe closed at one end is 100 Hz. If the same pipe is open at both the ends, the frequencies produced in Hz are
 - (A) 100, 200, 300, 400, ...

(B) 100, 300, 500, 700, ...

(C) 200, 300, 400, 500, ...

(D) 200, 400, 600, 800, ...

33. (D)

For a closed pipe fundamental frequency $n_1 = \frac{V}{4T} = 100 \text{ Hz}$

For an open pipe fundamental frequency $n_1 = \frac{V}{2I} = 2n_1 = 200$ Hz

In an open pipe all multiples of the fundamental are produced.

- **34.** For a particle moving in vertical circle, the total energy at different positions along the path
 - (A) is conserved
- (B) increases
- (C) decreases
- (D) may increase or decrease

34. (A)

35. A simple pendulum of length 'L' has mass 'M' and it oscillates freely with amplitude 'A'. At extreme position, its potential energy is

(g = acceleration due to gravity)

- (A) $\frac{\text{MgA}^2}{2I}$

- (B) $\frac{\text{MgA}}{2\text{L}}$ (C) $\frac{\text{MgA}^2}{\text{L}}$ (D) $\frac{2\text{MgA}^2}{\text{L}}$

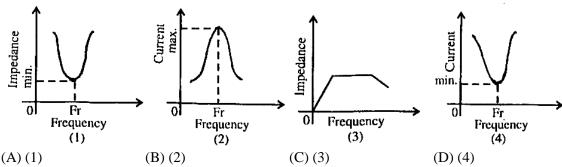
35. (A)

Potential energy = $\frac{1}{2}$ M ω^2 A² $=\frac{1}{2}M\cdot\frac{g}{L}\cdot A^2 \qquad \left(\because\omega=\sqrt{\frac{g}{\ell}}\right)$

- 36. On a photosensitive material, when frequency of incident radiation is increased by 30%, kinetic energy of emitted photoelectrons increases from 0.4eV to 0.9eV. The work function of the surface is
- (A) 1 eV
- (B) 1.267 eV
- (C) 1.4 eV
- (D) 1.8 eV

36. (B)

 $hv = 0.4 + W_0$


 $1.3 \text{ hv} = 0.9 + W_0$

(ii) - 1.3 (i) gives

 $0.3 \text{ W}_0 = 0.9 - 1.3 (0.4)$

 $W_0 = \frac{0.38}{0.3} = 1.267 \text{ eV}$

37. Out of the following graphs, which graph shows the correct relation (graphical representation) for LC parallel resonant circuit?

37. (D)

At parallel resonance, current is minimum.

Test Paper - Physcis & Chemistry

- **38.** According to de-Broglie hypothesis, the wavelength associated with moving electron of mass 'm' is ' λ_e '. Using mass energy relation and Planck's quantum theory, the wavelength associated with photon is ' λ_p '. If the energy (E) of electron and photon is same then relation between ' λ_e ' and ' λ_p ' is
- (B) $\lambda_p \alpha \lambda_e^2$
- (C) $\lambda_{\rm p} \alpha \sqrt{\lambda_{\rm e}}$ (D) $\lambda_{\rm p} \alpha \frac{1}{\lambda}$

38. (A)

For Photon : $E = \frac{hc}{\lambda}$ $\lambda_{\rm p} = \frac{{\rm hc}}{{\rm F}} \qquad \qquad \dots (1)$

For electron : $E = mc^2 = pc$

 $p = \frac{E}{C}$ $\lambda_e = \frac{h}{n} = \frac{hc}{E} \qquad \dots (2)$

By Eq.(1) and (2), $\lambda_{\rm p} \propto \lambda_{\rm e}$

- 39. A parallel plate air capacitor has capacity 'C' farad, potential 'V' volt and energy 'E' joule. When the gap between the plates is completely filled with dielectric
 - (A) both V and E increase

(B) both V and E decrease

(C) V decreases, E increases

(D) V increases, E decrease

- **39.** (B)
- **40.** The resistivity of potentiometer wire is 40×10^{-8} ohm metre and its area of corss-section is 8×10^{-6} m². If 0.2 ampere current is flowing through the wire, the potential gradient of the wire is
 - (A) 10^{-1} V/m
- (B) 10^{-2} V/m
- (C) 10^{-3} V/m
- (D) 10^{-4} V/m

40. (B)

 $R = \frac{\rho \ell}{\Delta}$ $\therefore \frac{R}{\ell} = \frac{\rho}{\Delta} = \frac{40 \times 10^{-8}}{8 \times 10^{-6}} = 5 \times 10^{-2}$ $\frac{V}{\ell} = \frac{IR}{\ell} = 0.2 \times 5 \times 10^{-2} = 10^{-2} \text{ V/m}$

- **41.** A ceiling fan rotates about its own axis with some angular velocity. When the fan is switched off, the angular velocity becomes $\left(\frac{1}{4}\right)^{th}$ of the original in time 't' and 'n' revolutions are made in that time. The number of revolutions made by the fan during the time interval between switch off and rest are (Angular retardation is uniform)
 - (A) $\frac{4n}{15}$
- (B) $\frac{8n}{15}$
- (C) $\frac{16n}{15}$
- (D) $\frac{32n}{15}$

41. (C)

 $\left(\frac{\omega}{4}\right)^2 = \omega^2 - 2\alpha n(2\pi)$

 $\therefore 2\alpha n (2\pi) = \omega^2 - \frac{\omega^2}{16}$

 $\therefore 2\pi n = \frac{15}{16} \left(\frac{\omega^2}{2\alpha} \right)$

 $\therefore 2\pi n' = \frac{\omega^2}{2\alpha} \qquad \therefore \qquad n' = \frac{16}{15}n$

42. A disc of moment of inertia 'I₁' is rotating in horizontal plane about an axis passing through a centre and perpendicular to its plane with constant angular speed ' ω_1 '. Another disc of moment of inertia ' I_2 ' having zero angular speed is placed coaxially on a rotating disc. Now both the discs are rotating with constant angular speed ' ω_2 '. The energy lost by the initial rotating disc is

$$(A) \frac{1}{2} \left[\frac{I_1 + I_2}{I_1 I_2} \right] \omega_1^2$$

(B)
$$\frac{1}{2} \left[\frac{I_1 I_2}{I_1 - I_2} \right] \omega_1^2$$

(C)
$$\frac{1}{2} \left[\frac{I_1 - I_2}{I_1 I_2} \right] \omega_1^2$$

$$\text{(A)} \ \frac{1}{2} \left\lceil \frac{I_1 + I_2}{I_1 \ I_2} \right\rceil \omega_l^2 \qquad \text{(B)} \ \frac{1}{2} \left\lceil \frac{I_1 \ I_2}{I_1 - I_2} \right\rceil \omega_l^2 \qquad \text{(C)} \ \frac{1}{2} \left\lceil \frac{I_1 - I_2}{I_1 \ I_2} \right\rceil \omega_l^2 \qquad \text{(D)} \ \frac{1}{2} \left\lceil \frac{I_1 \ I_2}{I_1 + I_2} \right\rceil \omega_l^2$$

42. (D)

$$\mathbf{I}_1 \boldsymbol{\omega}_1 = (\mathbf{I}_1 + \mathbf{I}_2) \; \boldsymbol{\omega}_2$$

$$\frac{\omega_2}{\omega_1} = \frac{I_1}{I_1 + I_2}$$

$$E_1 - E_2$$

$$=\frac{1}{2}{\rm I}_1\omega_1^2-\frac{1}{2}\left({\rm I}_1+{\rm I}_2\right)\omega_2^2$$

$$= \frac{1}{2}\omega_1^2 \left[I_1 - (I_1 + I_2) \frac{\omega_2^2}{\omega_1^2} \right]$$

$$=\frac{1}{2}\omega_{l}^{2}\left[I_{1}-(I_{1}+I_{2})\frac{I_{1}^{2}}{(I_{1}+I_{2})^{2}}\right]$$

$$= \frac{1}{2} \, \omega_1^2 \left[\frac{I_1^2 + I_1 I_2 - I_1^2}{I_1 + I_2} \right] = \frac{1}{2} \left[\frac{I_1 I_2}{I_1 + I_2} \right] \omega_1^2$$

43. A particle performs linear S.H.M. At a particular instant, velocity of the particle is 'u' and acceleration is ' α ' while at another instant velocity is 'v' and acceleration is ' β ' (0 < α < β). The distance between the two

(A)
$$\frac{u^2 - v^2}{\alpha + \beta}$$

(B)
$$\frac{u^2 + v^2}{\alpha + \beta}$$
 (C) $\frac{u^2 - v^2}{\alpha - \beta}$ (D) $\frac{u^2 + v^2}{\alpha - \beta}$

(C)
$$\frac{u^2 - v^2}{\alpha - \beta}$$

(D)
$$\frac{u^2 + v^2}{\alpha - \beta}$$

43. (A)

Let distance be x_1 when velocity is u and acceleration α .

Let distance by x_2 when velocity is v and acceleration β .

If ω is the angular frequency then

$$\alpha = \omega^2 x_1$$

and
$$\beta = \omega^2 x_2$$

Also
$$u^2 = \omega^2 A^2 - \omega^2 x_1^2$$

and
$$v^2 = \omega^2 A^2 - \omega^2 x_2^2$$

$$v^2 - u^2 = \omega^2 \left(x_1^2 - x_2^2 \right)$$

$$v^2 - u^2 = \omega^2 (x_1 - x_2) (x_1 + x_2)$$
(2)

$$v^{2} - u^{2} = \omega^{2} (x_{1} - x_{2}) (x_{1} + x_{2}) \qquad (2)$$

By Eq. (1) we get $v^{2} - u^{2} = (x_{1} - x_{2}) (\alpha + \beta)$

$$\therefore x_1 - x_2 = \frac{v^2 - u^2}{\alpha + \beta}$$

or
$$x_2 - x_1 = \frac{u^2 - v^2}{\alpha + \beta}$$

44. The observer is moving with velocity 'v₀' towards the stationary source of sound and then after crossing moves away from the source with velocity 'vo'. Assume that the medium through which the sound waves travel is at rest. If 'v' is the velocity of sound and 'n' is the frequency emitted by the source then the difference between apparent frequencies heard by the observer is

(A)
$$\frac{2n v_0}{v}$$

$$(B) \,\, \frac{n \, v_0}{v}$$

(C)
$$\frac{\mathrm{v}}{2\mathrm{n}\,\mathrm{v}_0}$$

(D)
$$\frac{\mathrm{v}}{\mathrm{n}\,\mathrm{v}_0}$$

Test Paper – Physcis & Chemistry

44. (A)

$$v' = v \left(\frac{v + v_0}{v} \right)$$

$$v'' = v \left(\frac{v - v_0}{v} \right)$$

$$v' - v'' = \frac{v}{v} \left(v + v_0 - v + v_0 \right) = \frac{2v v_0}{v}$$

45. A metal rod of length 'L' and cross-sectional area 'A' is heated through 'T' °C. What is the force required to prevent the expansion of the rod lengthwise?

[Y = Young's modulus of the material of rod, α = coefficient of linear expansion]

$$(A) \ \frac{YA\alpha T}{\left(1-\alpha T\right)} \qquad \qquad (B) \ \frac{YA\alpha T}{\left(1+\alpha T\right)} \qquad \qquad (C) \ \frac{\left(1-\alpha T\right)}{YA\alpha T} \qquad \qquad (D) \ \frac{\left(1+\alpha T\right)}{YA\alpha T}$$

(B)
$$\frac{YA\alpha T}{(1+\alpha T)}$$

(C)
$$\frac{(1-\alpha T)}{YA\alpha T}$$

(D)
$$\frac{(1+\alpha T)}{YA\alpha T}$$

45. (B)

Also
$$Y = \frac{F}{A} \cdot \frac{L(1 + \alpha t)}{\Delta L}$$

or
$$\Delta L = \frac{F \cdot L (1 + \alpha t)}{A \cdot Y}$$
 (2)

Equating (1) and (2)

$$\frac{FL(1+\alpha t)}{AY} = \alpha LT$$

$$\therefore F = \frac{AY\alpha T}{(1+\alpha t)}$$

46. Two coils P and Q are kept near each other. When no current flows through coil P and current increases in coil Q at the rate 10 A/s, the e.m.f. in coil P is 15 mV. When coil Q carries no current and current of 1.8 A flows through coil P, the magnetic flux linked with the coil Q is

46. (C)

$$|e_p| = M \cdot \frac{dI_Q}{dt}$$

$$15\times10^{-3}=\mathrm{M}\times10$$

$$\therefore M = 15 \times 10^{-4} H$$

$$\phi_Q = M \ I_P$$

$$= 15 \times 10^{-4} \times 1.8$$

$$=27.0\times10^{-4}$$

$$=2.7\times10^{-3}$$

$$= 2.7 \text{ mWb}$$

47. In Young's double slit experiment, in an interference pattern second minimum is observed exactly in front of one slit. The distance between the two coherent sources is 'd' and the distance between source and screen is 'D'. The wavelength of light source used is

(A)
$$\frac{d^2}{D}$$

(B)
$$\frac{d^2}{2D}$$

(C)
$$\frac{d^2}{3D}$$

(D)
$$\frac{d^2}{4D}$$

47. (C)

$$\frac{d}{2} = x_{m} = \frac{D}{d} \left(\frac{2 \times 2 - 1}{2} \right) \lambda$$

$$\therefore \frac{d}{2} = \frac{D}{d} \frac{3}{2} \lambda$$

$$\therefore \lambda = \frac{d^2}{3D}$$

- **48.** In communication system, the process of superimposing a low frequency signal on a high frequency wave is known as
 - (A) Repeater
- (B) Attenuation
- (C) Modulation
- (D) Demodulation

- **48.** (C)
- **49.** A bar magnet has length 3 cm, cross-sectional area 2 cm² and magnetic moment 3 Am². The intensity of magnetisation of bar magnet is
 - (A) $2 \times 10^5 \text{ A/m}$
- (B) $3 \times 10^5 \text{ A/m}$
- (C) $4 \times 10^5 \text{ A/m}$ (D) $5 \times 10^5 \text{ A/m}$

49. (D)

$$L = 3 \text{ cm} = 3 \times 10^{-2} \text{ m}^2$$

$$A = 2 \text{ cm}^2 = 2 \times 10^{-4} \text{ m}^2$$

 $M = 3 \text{ Am}^2$

$$M = 3 \text{ Am}^2$$

 $M_z \rightarrow$ Intensity of magnetisation

$$= \frac{M}{L \times A} = \frac{3 \text{ Am}^2}{3 \times 2 \times 10^{-6} \text{ m}^3} = \frac{1}{2} \times 10^6 \text{ A/m} = 5 \times 10^5 \text{ A/m}$$

- 50. The magnetic flux near the axis and inside the air core solenoid of length 60 cm carrying current 'I' is 1.57×10^{-6} Wb. Its magnetic moment will be (cross-sectional area of a solenoid is very small as compared to its length, $\mu_0 = 4\pi \times 10^{-7}$ SI unit)
 - (A) 0.25 A
- (B) 0.50 A
- (C) 0.75 A
- (D) 1 A

50. (C)

Magnetic induction inside the solenoid

$$B=\,\frac{\mu_0 N I}{L}$$

Magnetic flux, $\phi = BA$

$$=\frac{\mu_0 NI.A}{I.}$$

$$\begin{split} \text{Magnetic moment} &= \text{NIA} = \frac{\phi L}{\mu_0} \\ &= \frac{1.57 \times 10^{-6} \times 0.6}{4 \times 3.14 \times 10^{-7}} \\ &= 0.75 \text{ Am}^2 \end{split}$$

- **51.** The work done during combustion of 9×10^{-2} Kg of ethane, C_2H_6 (g) at 300 K is (Given $R = 8.314 \text{ J deg}^{-1} \text{ mol}^{-1}$, atomic mass C = 12, H = 1)
 - (A) 6.236 kJ
- (B) -6.236 kJ
- (C) 18.71 kJ
- (D) -18.71 kJ

51. (C)

Work done in chemical reaction is

$$w = -\Delta n_g RT$$

$$1C_2H_6(g) + \frac{7}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$$

$$\Delta n = 2 - 4.5 = -2.5$$

$$w=+~2.5\times8.314\times300$$

$$= 6.2355 \text{ kJ}$$

For
$$30 \text{ g} = 1 \text{ mole} = 6.2355 \text{ kJ}$$

- :. For 90 g = 3 moles = 18.71 kJ
- **52.** What type of sugar molecule is present in DNA?
 - (A) D-3-deoxyribose (B) D-ribose
- (C) D-2-deoxyribose (D) D-Glucopyranose

- **52.** (C)
 - Factual
- **53.** The molality of solution containing 15.20 g of urea, (molar mass = 60) dissolved in 150 g of water is
 - (A) $1.689 \text{ mol kg}^{-1}$
- (B) $0.1689 \text{ mol kg}^{-1}$ (C) $0.5922 \text{ mol kg}^{-1}$
- (D) $0.2533 \text{ mol kg}^{-1}$

Test Paper - Physcis & Chemistry

53. (A)

$$m = \frac{w_2}{m_2} \times \frac{1000}{w_1}$$
$$= \frac{15.20}{60} \times \frac{1000}{50}$$
$$= 1.689 \text{ mol kg}^{-1}$$

54. The acid which contains both –OH and –COOH groups is

- (A) phthalic acid
- (B) adipic acid
- (C) glutaric acid
- (D) salicylic acid

54. (D)

Salicylic acid

55. Identify the compound in which phosphorus exists in the oxidation state of +1.

- (A) Phosphonic acid (H₃PO₃)
- (B) Phosphinic acid (H₃PO₂)
- (C) Pyrophosphorus acid (H₄P₂O₅)
- (D) Orthophosphoric acid (H₃PO₄)

55. (B)

Factual

56. Identify the weakest oxidising agent among the following.

- $(A) Li^{+}$
- (B) Na⁺
- (C) Cd²⁺
- (D) I_2

56. (A)

It is strongest reducing agent.

- **57.** The monomers used in preparation of dextron are
 - (A) lactic acid and glycollic acid
 - (B) 3-Hydroxy butanoic acid and 3-Hydroxy pentanoic acid
 - (C) styrene and 1, 3-Butadiene
 - (D) hexamethylenediamine and adipic acid
- **57.** (A)

- **58.** Which among the following compounds does not act as a reducing agent?
 - (A) H₂O
- (B) H₂S
- (C) H₂Se
- (D) H_2 Te

58. (A)

Except H₂O, all hydrides of group 16 acts as reducing agent.

- **59.** Which of the following processes in **NOT** used to preserve the food?
 - (A) Irradiation
- (B) Addition of salts (C) Addition of heat
- (D) Hydration

59. (D)

Factual

- **60.** In case of substituted aniline the group which decreases the basic strength is
 - $(A) OCH_3$
- $(B) CH_3$
- (C) -NH₂
- (D) $-C_6H_5$

60. (D)

– C₆H₅ is electron withdrawing group.

	MHT-	CET - 2017 : Physics δ	& Chemistry - Test Paper (18)
(+) 2–Methylbutan–1– (A) Boiling point (D) Enantiomers of each ot	(B) Relative density	an-1-ol have different va (C) Refractive index	lues for which property? (D) Specific rotation
Which among the follo (A) Haematite (B) Magnesite – MgCO ₃ It is a mineral of Magne	(B) Magnesite	of iron? (C) Magnetite	(D) Siderite
Nitration of which amo (A) Formaldehyde (C) Factual Urotropine when nitrate	ong the following compo (B) Benzaldehyde ed gives high explosive	(C) Urotropine	(D) Acetaldehyde ammonia
300 K against a pressur (A) –99 kJ (B)	re of 100 KPa. (B) + 99 kJ $0.01 \text{ m}^3 - 1\text{m}^3$) = -0.99	(C) +22.98 kJ	rom a volume of 1m ³ to 10 dm ³ at (D) -22.98 kJ
Which element among (A) Arsenic (B) $\ddot{N} \equiv \ddot{N}$ $N(7) -1s^2$	(B) Nitrogen	$P\pi$ – $P\pi$ multiple bonds? (C) Phosphorus	(D) Antimony
(A) Reaction is useful f(B) It gives tertiary am(C) It gives primary am	for decreasing length of ine hine hine lic KOH is used with broken	in case of Hofmann brom carbon chain by one carbo omine	•
(A) Both possess same(B) Both have identical(C) Both have almost id(D) Both of these below(D)	number of valence elect atomic sizes dentical ionic radii ng to same period of peri		
(A) semicarbazone (B) R $C = O + H_2N - H_2N -$	(B) phenylhydrazone $-NH - C_6H_5 \longrightarrow H$	NH-NH ₂ , the product for (C) hydrazone $C=N-NH-C_6H_5$ $C=N-NH-C_6H_5$	rmed is (D) oxime

Phenyl hydrazone

Ketone

Test Paper – Physcis & Chemistry

- **69.** Solubility of which among the following solids in water changes slightly with temperature?
 - (A) KNO₃
- (B) NaNO₃
- (C) KBr
- (D) NaBr

69. (D)

Factual

- **70.** What is the quantity of hydrogen gas liberated when 46 g sodium reacts with excess ethanol? (Given At. mass of Na = 23)
 - (A) 2.4×10^{-3} kg
- (B) $2.0 \times 10^{-3} \text{ kg}$ (C) $4.0 \times 10^{-3} \text{ kg}$ (D) $2.4 \times 10^{-2} \text{ kg}$

$$2\text{Na}_{(\text{s})} + 2\text{C}_2\text{H}_5\text{OH}_{(\ell)} \rightarrow 2\text{C}_2\text{H}_5\text{O}^{\odot}\text{Na}^{\oplus} + \text{H}_{2(\text{g})} \uparrow$$

$$2\times23\text{g}$$
1 mole

1 mole of $H_2 = 2$ g of $H_2 = 2 \times 10^{-3}$ kg

- 71. tert-butyl methyl ether on treatment with hydrogen iodide in cold gives
 - (A) tert-butyl iodide and methyl iodide
- (B) tert-butyl alcohol and methyl alcohol
- (C) tert-butyl alcohol and methyl iodide
- (D) tert-butyl iodide and methyl alcohol

71. (D)

- 72. Name the process that is employed to refine aluminium.
 - (A) Hall's process
- (B) Mond process
- (C) Hoope's process
 - (D) Serperck's process

72. (C)

Factual

- 73. The colour and magnetic nature of manganate ion (MnO_4^{2-}) is
 - (A) green, paramagnetic

(B) purple, diamagnetic

(C) green, diamagnetic

(D) purple, paramagnetic

73. (A)

 MnO_4^{2-} manganate ion is green and paramagnetic.

74. The osmotic pressure of solution containing 34.2 g of cane sugar (molar mass = 342 g mol⁻¹) in 1L of solution at 20° C is

(Given, $R = 0.082 \text{ L atm K}^{-1} \text{ mol}^{-1}$)

- (A) 2.40 atm
- (B) 3.6 atm
- (C) 24 atm
- (D) 0.0024 atm

74. (A)

$$\pi = CRT$$

$$\pi = \frac{34.2}{342 \times 1L} \times 0.082 \times 293 = 2.40 \text{ atm}$$

- 75. In assigning R-S configuration which among the following groups has highest priority?
 - (A) -SO₃H
- (B) -COOH
- (C) -CHO
- (D) $-C_6H_5$

- **75.** (A)
 - $-SO_3H$ (sulphur atomic number 16)
- **76.** Which of the following is used as antiseptic?
 - (A) Chloramphenicol (B) Bithional
- (C) Cimetidine
- (D) Chlordiazepoxide

76. (B)

Factual

- 77. In preparation of sulphuric acid from sulphur dioxide in lead chamber process. What substance is used as a catalyst?
 - (A) Manganese dioxide

(B) Vanadium pentoxide

(C) Nitric oxide

(D) Raney Nickel

77. (C)

Catalyst used in lead chamber process is nitric oxide.

78. The correct charge on and co-ordination number of 'Fe' in $K_3[Fe(CN)_6]$ is

(A) + 2, 4

(B) +3, 6

(C) +2, 6

(D) +3, 3

78. (B)

$$K_3[Fe(CN)_6] \Rightarrow [Fe(CN)_6]^{3-}$$

 $x + 6(-1) = -3$

$$\therefore x = +3$$

Coordination number of Fe is 6 as 6 CN are attached.

79. Which among the following reactions is an example of pseudo first order reaction?

(A) Inversion of cane sugar

(B) Decomposition of H₂O₂

(C) Conversion of cyclopropane to propene

(D) Decomposition of N_2O_5

79. (A)

Factual

80. The amine which reacts with p-toluenesulphonyl chloride to give a clear solution which on acidification gives insoluble compound is

(A) C₂H₅NH₂

- (B) $(C_2H_5)_2NH$
- $(C) (C_2H_5)_3N$
- (D) CH₃NHC₂H₅

80. (A)

1° amine gives clear solution which on acidification gives insoluble compound.

81. Which among the following equations represents Arrhenius equation?

(A) $k = Ae^{E_a/RT}$

(B) $k = A \cdot e^{RT/E_a}$

(C) $k = \frac{A}{e^{E_a/RT}}$ (D) $k = \frac{A}{e^{RT/E_a}}$

81. (C)

Arrhenius equation is

$$k = Ae^{-Ea/RT}$$

$$\therefore \quad k \quad = \quad \frac{A}{e^{Ea/RT}}$$

- **82.** Which of the following compound will give positive iodoform test?
 - (A) Isopropyl alcohol

(B) Propionaldehyde

(C) Ethylphenyl ketone

(D) Benzyl alcohol

82. (A)

Alcohols having $R - \stackrel{|}{C} - CH_3$ structure give positive iodoform test.

83. The first law of thermodynamics for isothermal process is

(A) q = -W

- (B) $\Delta U = W$
- (C) $\Delta U = q_v$
- (D) $\Delta U = -q_v$

83. (A)

First law of thermodynamics is, $\Delta U = q + w$

For isothermal process, $\Delta U = 0$

$$\therefore$$
 q = -w

84. The conversion of ethyl bromide to ethyl iodide using sodium iodide and dry acetone, this reaction is known as

(A) Swarts reaction

(B) Finkelstein reaction

(C) Sandmeyer reaction

(D) Stephen reaction

84. (B)

Factual

Test Paper - Physcis & Chemistry

Factual

10.	st raper – r nyscis a	Onemistry		
	What is the hybridization (A) SP ³ (C) Factual	on of carbon atoms in full (B) SP	lerene? (C) SP ²	(D) dSP ³
	What is the SI unit of co (A) Sm (B) Factual	onductivity? (B) Sm ⁻¹	(C) Sm ²	(D) Sm ⁻²
	Which of the following (A) alkaline KMnO ₄ (A) Factual	·	(C) alkaline Na ₂ Cr ₂ O ₇	(D) MnO ₂
	What is the chief constitution (A) B ₂ O ₃ (B) Pyrex glass is obtained by	(B) SiO ₂	(C) Al ₂ O ₃ % SiO ₂ , 10 to 25% B ₂ O ₃	(D) Na_2O and remaining amount of Al_2O_3 .
	(A) n-butyl alcohol (C)	compounds has lowest b (B) isobutyl alcohol as branching increases bo	(C) tert–butyl alcohol	(D) sec-butyl alcohol
	(D) $\Delta H = \Delta U + \Delta nRT$ (C)	$-\sum_{\text{product bonds}} H_{\text{reactants}}$,	sary to break product bonds
				acentration of reactant is 0.080 M, (D) 10.10×10^{-4} S
	The polymer used in ma (A) bakelite (A) Factual	aking handles of cookers (B) nylon–2–nylon–6		(D) polyvinyl chloride
	Which halogen has the (A) Fluorine (B)	highest value of negative (B) Chlorine	electron gain enthalpy? (C) Bromine	(D) Iodine

		MHI-C	EI - 2017 : Physics &	& Chemistry - Test Paper (22)
94.	What is the actual volum (A) 20 cm ³	ne occupied by water mo (B) 10 cm ³	olecules present in 20 cm (C) 40 cm ³	³ of water? (D) 24.89 dm ³
94.	(B) Half of the volume occu	, ,		
95.	Which of following co- (Given At. No. Pt = 78, 1)
	(A) $\left[Pt(NH_3)6 \right]^{4+}$	(B) $\left[\text{Fe} \left(\text{CN} \right)_6^{4-} \right]$	(C) $\left[\operatorname{Zn}\left(\operatorname{NH}_{3}\right)_{4}\right]^{2+}$	(D) $\left[\text{Cu} \left(\text{NH}_3 \right)_4 \right]^{2+}$
95.	(D)			
	For $[Cu(NH_3)_4]^{2+}$, EA	N = 35		
96.	at positive electrode, wh	ile it is being used as a s		taking place in lead accumulator y? (D) Pb ⁴⁺ > Pb ²⁺
96.	(D) Reaction at positive elec		(C)10 710	(D)10 -710
	PbO _{2(s)} + 4H ⁺ _(aq) + SO ²⁻ _{4(aq)} ∴ Pb ⁴⁺ is converted int	$_{(aq)}^{-} + 2e^{-} \rightarrow PbSO_{4(s)} +$	$2H_2O_{(\ell)}$	
97.	For which among the fol (A) Aluminium Chloride (C) Ammonium Chlorid	e	ous solutions Van't Hoff (B) Potassium Sulphate (D) Urea	factor has the lowest value?
97.	(D) Urea is molecular solid h		, ,	on.
98.	The amino acid which is		(C) Proline	(D) Voling
98.	(A) Histidine(A)Factual	(B) Tyrosine	(C) Frome	(D) Valine
99.	Which element among the			
99.	(A) Argon (A) Factual	(B) Oxygen	(C) Nitrogen	(D) Bromine
100	• A molecule of Stachyos			(D) 24
100	(A) 6 (D) Factual	(B) 12	(C) 18	(D) 24

LOGARITHMS

ГТ	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34	38
						0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569						4	8	12	16	20	23	27	31	35
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934						3	7	11	14	18	21	25	28	32
						0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271						3	6	10	13	16	19	23	26	29
						1303	1335	1367	1399	1430	3	6	10	13	16	19	22	25	29
14	1461	1492	1523	1553	1584				. "		3	6	9	12	15	19	22	25	28
						1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26
15	1761	1790	1818	1847	1875						3	6	9	11	14	17	20	23	26
						1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25
16	2041	2068	2095	2122	2148	196 LEAN				0070	3	6	8	11	14	16	19	22	24
-	ļ				0.105	2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23
17	2304	2330	2355	2380	2405				0504	0500	3	5	8	10	12		17	20	
	0550	0577	0004	0005	00.40	2430	2455	2480	2504	2529	2	5 5	- 8 - 7	9	12	15	17	19	22
18	2553	2577	2601	2625	2648	0070	0005	0740	0740	2765	2	4	7	9	11	14	16	18	21
10	0700	2040	2833	2856	2878	2672	2695	2718	2742	2703	2	4	$\frac{7}{7}$	9	11	13	16	18	20
19	2788	2810	2000	2000	20/0	2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
20	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	14	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	. 6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
37	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	1	2	3	5	6	7	8	9	10
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	1	2	3	5	6	7	8	9	10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1 1	2	3	4	5	6	7	7	8
46	6628	6637	6646	6656	6665	6675	6684	6693 6785	6794	6712 6803	1	2	3	4	5 5	6	6	7	8
47	6721	6821	6739	6749	6758	6767	6776	6875	6884	6893	1	2	3	4	4	5 5	6	7	8
48	6812	6911		6839	6848	6857	6866	6964	6972		1	2				5	6	7	
49	6902	0911	6920	6928	6937	6946	6955	0904	109/2	6981	1	2	3	4	4	5	L 6		8

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	. 2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3.	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	. 0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4

						ļ	ANTIL	.OGA	RITH	MS									
	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
0.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
0.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
0.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
0.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
0.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2.
0.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
0.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
0.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
0.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
0.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	- 1	1	2	2	2	3
0.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	. 2	2	2	3
0.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
0.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
0.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
0.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
0.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1.*	2	2	2	3	3
0.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
0.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	i	2	2	2	3	3
0.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
0.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
0.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
0.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
0.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
0.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
0.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
0.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
0.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
0.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
0.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
0.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	
0.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
0.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
0.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	T	3	3		
0.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	2	3		4	4
0.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	_1	1		2			4	4	5
0.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339			2		3	3	4	4	5
0.37	2344	2350	2355	2360	2366	2371	2377	1-2000000000000000000000000000000000000	Andrew Control	14-14-14-14-14-14	1	1	2	2	3 .	3	4	4	5
0.38	2399	2404	2410	2415	2421			2382	2388	2393	1	1	2	2	3	3	4	4	5
0.39	2455	2460	2466	2472	2477	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
	2512					2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
0.40		2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
0.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
0.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
0.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
0.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
0.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
0.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
0.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
0.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6
0.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	- 3	4	4	5	6	6

ANTILOGARITHMS

	7 8 9	6	5	4	3	2	1	9	8	7	6	5	4	3	2	1	0	
0.62		4		3			-	3228		3214	3206		3192	3184	3177	3170	3162	0.50
0.63	5 6 7	5	4	3	2	2	1	3304	3296	3289	3281	3273	3266	3258	3251	3243	3236	0.51
0.64	5 6 7	5	4	3	2	2	1	3381	3373	3365	3357	3350	3342	3334	3327	3319	3311	0.52
0.65	6 6 7	5	4	3	2	2	1	3459	3451	3443	3436	3428	3420	3412	3404	3396	3388	0.53
0.66	6 6 7	5	4	3	2	2	1	3540	3532	3524	3516	3508	3499	3491	3483	3475	3467	0.54
0.67	6 7 7	5	4	3	2	2	1	3622	3614	3606	3597	3589	3581	3573	3565	3556	3548	0.55
0.68	6 7 8	5	4	3	3	2	1	3707	3698	3690	3681	3673	3664	3656	3648	3639	3631	0.56
0.69	6 7 8	5	4	3	3	2	1	3793	3784	3776	3767	3758	3750	3741	3733	3724	3715	0.57
0.60	6 7 8	5	4	4	3	2	1	3882	3873	3864	3855	3846		3828	3819	3811	3802	0.58
0.61	6 7 8	5	5	4	3	2	1	3972	3963	•3954	3945	3936	3926	3917	3908			0.59
0.62	6 7 8	6	5	4	3	2	1	4064	4055	4046	4036	4027	4018	4009	3999			0.60
0.63	7 8 9	6	5	4	3.	2	1	4159	4150	4140	4130	4121	4111	4102	4093	1.		
0.64	7 8 9	6	5	4	3	2	1	4256	4246	4236	4227	4217	4207					
0.65 4467 4477 4487 4498 4508 4519 4529 4539 4550 4560 1 2 3 4 5 6 0.66 4571 4581 *4592 4603 4613 4624 4634 4645 4656 4667 1 2 3 4 5 6 0.67 4677 4688 4699 4710 4721 4732 4742 4753 4764 4775 1 2 3 4 5 6 0.69 4898 4909 4920 4932 4943 4955 4966 4977 4989 5000 1 2 3 5 6 7 0.70 5012 5023 5035 5047 5068 5070 5082 5093 5105 5117 1 2 4 5 6 7 0.71 5122 5140 51508 5227 5284 5297	7 8 9	6	5	4	3	2	1	4355	4345	4335	4325	4315	430,5	4295				1 1
0.66 4571 4581 *4592 4603 4613 4624 4634 4645 4666 4667 1 2 3 4 5 6 0.67 4677 4688 4699 4710 4721 4732 4742 4753 4764 4775 1 2 3 4 5 7 0.68 4786 4797 4808 4819 4831 4842 4853 4864 4875 4887 1 2 3 4 6 7 0.69 4898 4909 4920 4932 4943 4955 4966 4977 4989 5000 1 2 3 5 6 7 0.70 5012 5023 5035 5047 5058 5070 5082 5093 5105 5117 1 2 4 5 6 7 0.71 5129 5140 5152 5164 5176 5188	7 8 9	6		4			1	4457										
0.67 4677 4688 4699 4710 4721 4732 4742 4753 4764 4775 1 2 3 4 5 7 0.68 4786 4797 4808 4819 4831 4842 4853 4864 4875 4887 1 2 3 4 6 7 0.69 4898 4909 4920 4932 4943 4955 4966 4977 4989 5000 1 2 3 5 6 7 0.70 5012 5023 5035 5047 5058 5070 5082 5093 5105 5117 1 2 4 5 6 7 0.71 5129 5140 5152 5164 5176 5188 5200 5212 5224 5236 1 2 4 5 6 7 0.72 5248 5260 5272 5284 5297 5309	7 8 9	6					1				1							
0.68 4786 4797 4808 4819 4831 4842 4853 4864 4875 4887 1 2 3 4 6 7 0.69 4898 4909 4920 4932 4943 4955 4966 4977 4989 5000 1 2 3 5 6 7 0.70 5012 5023 5035 5047 5058 5070 5082 5093 5105 5117 1 2 4 5 6 7 0.71 5129 5140 5152 5164 5176 5188 5200 5212 5224 5236 1 2 4 5 6 7 0.72 5248 5260 5272 5284 5297 5309 5321 5333 5346 5348 1 2 4 5 6 7 0.73 5375 5683 5546 5559 5572 5585	7 9 10	6		4			1											
0.69 4898 4909 4920 4932 4943 4955 4966 4977 4989 5000 1 2 3 5 6 7 0.70 5012 5023 5035 5047 5058 5070 5082 5093 5105 5117 1 2 4 5 6 7 0.71 5129 5140 5152 5164 5176 5188 5200 5212 5224 5236 1 2 4 5 6 7 0.72 5248 5260 5272 5284 5297 5309 5321 5333 5346 5348 1 2 4 5 6 7 0.73 5370 5383 5395 5408 5420 5433 5445 5458 5470 5483 1 3 4 5 6 8 0.74 5495 5508 5521 5534 5546 5559	8 9 10	7		4			1							100000	•			
0.70 5012 5023 5035 5047 5058 5070 5082 5093 5105 5117 1 2 4 5 6 7 0.71 5129 5140 5152 5164 5176 5188 5200 5212 5224 5236 1 2 4 5 6 7 0.72 5248 5260 5272 5284 5297 5309 5321 5333 5346 5348 1 2 4 5 6 7 0.73 5370 5383 5395 5408 5420 5433 5445 5458 5470 5483 1 3 4 5 6 7 0.74 5495 5508 5521 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 0.75 5623 5636 5649 5662 5675 5689	8 9 10	7																
0.71 5129 5140 5152 5164 5176 5188 5200 5212 5224 5236 1 2 4 5 6 7 0.72 5248 5260 5272 5284 5297 5309 5321 5333 5346 5348 1 2 4 5 6 7 0.73 5370 5383 5395 5408 5420 5433 5445 5458 5470 5483 1 3 4 5 6 8 0.74 5495 5508 5521 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 0.75 5623 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 7 8 0.76 5754 5768 5881 5972 5943 59575	8 9 10	7			3		1							1				
0.72 5248 5260 5272 5284 5297 5309 5321 5333 5346 5348 1 2 4 5 6 7 0.73 5370 5383 5396 5408 5420 5433 5445 5458 5470 5483 1 3 4 5 6 8 0.74 5495 5508 5521 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 0.75 5623 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 7 8 0.76 5754 5768 5781 5794 5808 5821 5834 5848 5861 5875 1 3 4 5 7 8 0.77 5888 5902 5916 5929 5943 5957	8 9 11	7			-			. 11110	10000000									
0.73 5370 5383 5395 5408 5420 5433 5445 5458 5470 5483 1 3 4 5 6 8 0.74 5495 5508 5521 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 0.76 5623 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 7 8 0.76 5754 5768 5781 5794 5808 5821 5834 5848 5861 5875 1 3 4 5 7 8 0.77 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 6 7 8 0.79 6166 6180 6194 6209 6223 6237	8 10 11	7																
0.74 5495 5508 5521 5534 5546 5559 5572 5585 5598 5610 1 3 4 5 6 8 0.75 5623 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 7 8 0.76 5754 5768 5781 5794 5808 5821 5834 5848 5861 5875 1 3 4 5 7 8 0.77 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 5 7 8 0.78 6026 6039 6053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 8 0.80 6310 6324 6339 6353 6368 6383	9 10 11	7													1			
0.75 5623 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 7 8 0.76 5754 5768 5781 5794 5808 5821 5834 5848 5861 5875 1 3 4 5 7 8 0.77 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 5 7 8 0.78 6026 6039 6053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 8 0.79 6166 6180 6194 6209 6223 6237 6252 6266 6281 6295 1 3 4 6 7 8 0.81 6457 6471 6486 6501 6516 6531	9 10 11	8																
0.76 5754 5768 5781 5794 5808 5821 5834 5848 5861 5875 1 3 4 5 7 8 0.77 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 5 7 8 0.78 6026 6039 6053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 8 0.79 6166 6180 6194 6209 6223 6237 6252 6266 6281 6295 1 3 4 6 7 8 0.80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 3 4 6 7 9 0.81 6457 6471 6486 6501 6516 6531	9 10 12	8																
0.77 5888 5902 5916 5929 5943 5957 5970 5984 5998 6012 1 3 4 5 7 8 0.78 6026 6039 6053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 8 0.79 6166 6180 6194 6209 6223 6237 6252 6266 6281 6295 1 3 4 6 7 8 0.80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 3 4 6 7 9 0.81 6457 6471 6486 6501 6516 6531 6546 6561 6577 6592 2 3 5 6 8 9 0.82 6607 6622 6637 6663 6683 6899	9 10 12																	1 1
0.78 6026 6039 6053 6067 6081 6095 6109 6124 6138 6152 1 3 4 6 7 8 0.79 6166 6180 6194 6209 6223 6237 6252 6266 6281 6295 1 3 4 6 7 8 0.80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 3 4 6 7 9 0.81 6457 6471 6486 6501 6516 6531 6546 6561 6577 6592 2 3 5 6 8 9 0.82 6607 6622 6637 6653 6668 6683 6699 6714 6730 6745 2 3 5 6 8 9 0.83 6761 6776 6792 6808 6823 6839	9 11 12											11.9						
0.79 6166 6180 6194 6209 6223 6237 6252 6266 6281 6295 1 3 4 6 7 8 0.80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 3 4 6 7 9 0.81 6457 6471 6486 6501 6516 6531 6546 6561 6577 6592 2 3 5 6 8 9 0.82 6607 6622 6637 6653 6668 6683 6699 6714 6730 6745 2 3 5 6 8 9 0.83 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 9 0.84 6918 6934 6950 6966 6982 6998	10 11 12																	
0.80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 1 3 4 6 7 9 0.81 6457 6471 6486 6501 6516 6531 6546 6561 6577 6592 2 3 5 6 8 9 0.82 6607 6622 6637 6653 6668 6683 6699 6714 6730 6745 2 3 5 6 8 9 0.83 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 9 0.84 6918 6934 6950 6966 6982 6998 7015 7031 7047 7063 2 3 5 6 8 9 0.85 7079 7096 7112 7129 7145 7161	10 11 13																	
0.81 6457 6471 6486 6501 6516 6531 6546 6561 6577 6592 2 3 5 6 8 9 0.82 6607 6622 6637 6653 6668 6683 6699 6714 6730 6745 2 3 5 6 8 9 0.83 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 9 0.84 6918 6934 6950 6966 6982 6998 7015 7031 7047 7063 2 3 5 6 8 9 0.85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 0.86 7244 7261 7278 7295 7311 7328	10 11 13																	
0.82 6607 6622 6637 6653 6668 6683 6699 6714 6730 6745 2 3 5 6 8 9 0.83 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 9 0.84 6918 6934 6950 6966 6982 6998 7015 7031 7047 7063 2 3 5 6 8 9 0.85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 0.86 7244 7261 7278 7295 7311 7328 7345 7362 7379 7396 2 3 5 7 8 10 0.87 7413 7430 7447 7464 7482 7499	10 12 13																	
0.83 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 9 0.84 6918 6934 6950 6966 6982 6998 7015 7031 7047 7063 2 3 5 6 8 10 0.85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 0.86 7244 7261 7278 7295 7311 7328 7345 7362 7379 7396 2 3 5 7 8 10 0.87 7413 7430 7447 7464 7482 7499 7516 7534 7551 7568 2 3 5 7 8 11 0.89 7586 7603 7621 7638 7656 7674	11 12 14 11 12 14	-1			1000								0.000					
0.84 6918 6934 6950 6966 6982 6998 7015 7031 7047 7063 2 3 5 6 8 10 0.85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 0.86 7244 7261 7278 7295 7311 7328 7345 7362 7379 7396 2 3 5 7 8 10 0.87 7413 7430 7447 7464 7482 7499 7516 7534 7551 7568 2 3 5 7 9 10 0.88 7586 7603 7621 7638 7656 7674 7691 7709 7727 7745 2 4 5 7 8 11 0.89 7762 7780 7798 7816 7834 7852	11 12 14																	
0.85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 0.86 7244 7261 7278 7295 7311 7328 7345 7362 7379 7396 2 3 5 7 8 10 0.87 7413 7430 7447 7464 7482 7499 7516 7534 7551 7568 2 3 5 7 9 10 0.88 7586 7603 7621 7638 7656 7674 7691 7709 7727 7745 2 4 5 7 8 11 0.89 7762 7780 7798 7816 7834 7852 7870 7889 7907 7925 2 4 5 7 9 11 0.90 7943 7962 7980 7998 8017 8035	11 13 14																	
0.86 7244 7261 7278 7295 7311 7328 7345 7362 7379 7396 2 3 5 7 8 10 0.87 7413 7430 7447 7464 7482 7499 7516 7534 7551 7568 2 3 5 7 9 10 0.88 7586 7603 7621 7638 7656 7674 7691 7709 7727 7745 2 4 5 7 8 11 0.89 7762 7780 7798 7816 7834 7852 7870 7889 7907 7925 2 4 5 7 9 11 0.90 7943 7962 7980 7998 8017 8035 8054 8072 8091 8110 2 4 6 7 9 11	12 13 15	10							1	- 1								1
0.87 7413 7430 7447 7464 7482 7499 7516 7534 7551 7568 2 3 5 7 9 10 0.88 7586 7603 7621 7638 7656 7674 7691 7709 7727 7745 2 4 5 7 8 11 0.89 7762 7780 7798 7816 7834 7852 7870 7889 7907 7925 2 4 5 7 9 11 0.90 7943 7962 7980 7998 8017 8035 8054 8072 8091 8110 2 4 6 7 9 11	12 13 15	10														• / -		
0.88 7586 7603 7621 7638 7656 7674 7691 7709 7727 7745 2 4 5 7 8 11 0.89 7762 7780 7798 7816 7834 7852 7870 7889 7907 7925 2 4 5 7 9 11 0.90 7943 7962 7980 7998 8017 8035 8054 8072 8091 8110 2 4 6 7 9 11	12 14 16	10							100000	1					and the state of			
0.89 7762 7780 7798 7816 7834 7852 7870 7889 7907 7925 2 4 5 7 9 11 0.90 7943 7962 7980 7998 8017 8035 8054 8072 8091 8110 2 4 6 7 9 11	12 14 16	11										- 1						1 1
0.90 7943 7962 7980 7998 8017 8035 8054 8072 8091 8110 2 4 6 7 9 11	13 14 16	11																
	13 15 17	11								1		1						
0.31 0.20 0.47 0.00 0.03 0.204 0.222 0.241 0.200 0.273 0.233 2 4 0 0 9 11	13 15 17	11	9	8	6	4	2	8299	8279	8260	8241	8222	8204	8185	8166	8147	8128	0.91
	14 15 17	12				4	2				- 1					8337	Contraction in	
	14 16 18	12		8	6	4	2		8670			8610	1	8570	8551	8531	8511	
0.94 8710 8730 8750 8770 8790 8810 8831 8851 8872 8892 2 4 6 8 10 12	14 16 18	12	10	8	6	4.	2	8892	8872	8851	8831	8810	8790	8770	8750	8730	8710	0.94
1 1 1 1	15 17 19	12	10	8	6	4	2	9099		9057	9036	9016	8995	8974	8954	8933	8913	0.95
1	15 17 19	13		8	6	4	2	9311	9290	9268	9247	9220	9204	9183	9162	9141	9120	0.96
	15 17 20	13		9	7	4	2	9528	9506	9484	9462	9441	9419	9397	9376	9354	9333	0.97
0.98 9550 9572 9594 9616 9638 9661 9683 9705 9727 9750 2 4 7 9 11 13	16 18 20	13	11	9	7	4	2	9750	9727	9705	9683	9661	9638	9616	9594	9572	9550	0.98
	16 18 20	14	11.	9	7	5	2	9977	9954	9931	9908	9886	9863	9840	9817	9795	9772	0.99