JEE Mains 2018 Code C - Answers & Solutions

1. 2. 3. 4. 5.	A A C D	Medium Medium Easy	Ionic Equilibrium Introduction to Organic Chemistry			
3. 4.	С		Introduction to Organic Chemistry			
4.		Fasy	Introduction to Organic Chemistry			
	D	Lusy	P block - I			
5.		Medium	Alcohols, Ethers and Phenols			
	В	Hard	Redox Reactions			
6.	А	Medium	Ionic Equilibrium			
7.	С	Medium	Thermodynamics			
8.	С	Medium	P - Block Elements - II			
9.	В	Medium	Electrochemistry			
10.	В	Easy	Chemical Bonding			
11.	В	Easy	P block - I			
12.	С	Easy	Chemical Bonding			
13.	В	Hard	Amines			
14.	В	Easy	Solid State			
15.	В	Medium	Chemical Bonding			
16.	С	Hard	Coordination Compounds			
17.	В	Medium	Hydrogen			
18.	D	Easy	Biomolecules, Polymers and Chemistry in Everyday life			
19.	С	Hard	Amines			
20.	В	Medium	Environmental Chemistry			
21.	А	Medium	Coordination Compounds			
22.	В	Easy	Hydrocarbons			
23.	С	Hard	Basic Concepts of Chemistry			
24.	В	Medium	Carboxylic Acids and Derivatives			
25.	А	Medium	Hydrocarbons			
26.	D	Medium	Chemical Equilibrium			
27.	С	Medium	Alcohols, Ethers and Phenols			
28.	В	Hard	Ionic Equilibrium			
29.	D	Medium	Chemical Kinetics			
30.	С	Medium	Solutions			
31.	А	Medium	Indefinite Integration			
32.	D	Medium	Conic Sections - II			

33.	А	Medium	Conic Sections - II
34.	D	Medium	Vector Algebra
35.	В	Medium	Complex Numbers
36.	D	Hard	Definite Integration
37.	С	Hard	Binomial Theorem
38.	В	Medium	Sequence and Series
39.	В	Easy	Statistics
40.	D	Easy	Trigonometry
41.	А	Hard	Sets, Relations and Functions
42.	D	Medium	Permutations and Combinations
43.	С	Hard	Applications of Derivatives
44.	В	Hard	Limits
45.	С	Medium	Definite Integration
46.	А	Medium	Probability
47.	С	Medium	3 Dimensional Geometry
48.	А	Hard	Trigonometry
49.	В	Medium	Straight Lines
50.	А	Hard	Sequence and Series
51.	С	Medium	Conic Sections - II
52.	В	Medium	Conic Sections - I
53.	D	Hard	Continuity and Differentiability
54.	В	Medium	Matrices and Determinants
55.	D	Medium	Mathematical Reasoning
56.	А	Medium	Matrices and Determinants
57.	В	Medium	Inequalities
58.	С	Medium	Conic Sections - II
59.	В	Medium	Differential Equations
60.	А	Medium	3 Dimensional Geometry
61.	D	Hard	Wave Optics
62.	D	Hard	Modern Physics
63.	В	Easy	Semiconductor Electronics
64.	В	Easy	Units and Measurement
65.	А	Medium	Magnetic Effects of Electric Current
66.	А	Medium	Electrostatics
67.	А	Easy	Dynamics of Motion
68.	В	Medium	Work, Power, Energy and Momentum

ŀ	•	•	
69.	D	Medium	Capacitors
70.	А	Medium	Oscillations
71.	D	Medium	Modern Physics
72.	В	Medium	Magnetic Effects of Electric Current
73.	А	Easy	Current Electricity
74.	В	Easy	Electromagnetic Waves and Communication Systems
75.	В	Easy	Wave Optics
76.	В	Medium	Current Electricity
77.	D	Hard	Rotation
78.	А	Hard	Work, Power, Energy and Momentum
79.	В	Medium	Electromagnetic Waves and Communication Systems
80.	D	Easy	AC Circuits
81.	А	Medium	Motion in 1D
82.	А	Easy	Current Electricity
83.	В	Hard	Gravitation
84.	C	Medium	Modern Physics
85.	А	Easy	AC Circuits
86.	В	Medium	Thermodynamics and Kinetic Theory of Gases
87.	В	Medium	Mechanical Properties of Solids
88.	D	Hard	Waves
89.	D	Medium	Work, Power, Energy and Momentum
90.	C	Hard	Rotation

Solutions

Q1. (A)

 CH_3COOK is a salt of weak acid CH_3COOH and strong base (KOH). The net solution will be basic.

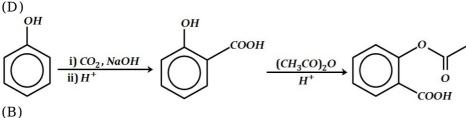
Q2. (A)

Kjeldahl's method is not applicable to compounds containing nitrogen in nitro $(-NO_2)$, azo groups $(-N_2^+)$ and nitrogen present in rings as nitrogen of these compounds does not convert to ammonium sulphate under the conditions of this method.

Q3. (C)

Both BCl_3 and $AlCl_3$ are lewis acids.

Q4.



Q5.

Weak base (WB) + Strong Acid (SA) \rightarrow Acidic solution

When weak base is titrated against strong acid in the presence of methyl orange as indicator then the end point is obtained in acidic conditions (pH < 7).

. The colour change of methyl orange is from yellow to pinkish red.

Q6. (A) $+ S^{2-}$ H_2S $2H^+$ \Rightarrow 0.1 $\begin{array}{cccc} 0.1 - 0.1\alpha & 0.2\alpha + 0.2 & 0.1\alpha \\ K = K_1 K_2 = 1 \times 10^{-7} \times 1.2 \times 10^{-13} = 1.2 \times 10^{-20} \\ K = \frac{[H^+] [S^{2^-}]}{[H_2 S]} \Rightarrow 1.2 \times 10^{-20} = \frac{0.2^{2} (1+\alpha)^{2} [S^{2^-}]}{0.1(1-\alpha)} \\ \Rightarrow 1.2 \times 10^{-20} = \frac{0.2 \times 0.2 \times [S^{2^-}]}{0.1} & \left\{ \begin{array}{c} 1+\alpha \approx 1 \\ 1-\alpha \approx 1 \\ \vdots & \alpha \text{ is very small} \end{array} \right\}$ $\Rightarrow \left \lceil S^{2-}
ight
ceil = 3 imes 10^{-20}$ (C) Q7. $C_{6}H_{6}(l)+rac{15}{2}O_{2}(g)
ightarrow 6CO_{2}(g)+3H_{2}O(l)$ Given $Q_v = -3263.9 \ kJ/mole$ \Rightarrow At constant volume, $\Delta U = Q_v$ (from 1st law) $\Rightarrow \Delta U = -3263.9 \; kJ/mole$ At constant pressure, $Q_p = ?$ \Rightarrow From 1 st law $\Delta U = Q_p + W$ $\Rightarrow Q_P = -3263.9 - 3.7$ $= -3267.6 \ kJ/mole$ Q8. (C) $(NH_4)_2 Cr_2 O_7
ightarrow Cr_2 O_3 + N_2 + 4H_2 O$ $NH_4NO_2
ightarrow N_2 + 2H_2O$ $Ba(N_3)_2
ightarrow Ba + 3N_2$ Q9. (B) + $3O_2 \rightleftharpoons B_2O_3 + 3H_2O$ B_2H_6 27.66 q $3 \, mol$ 1 mol3 mol= 1 mol $2H_2O
ightarrow 2H_2 + O_2$ Electrolysis of H_2O involves $4 e^-$ transfer of $1 mol O_2$ \therefore For $3 \ mol \ O_2$, $4 \times 3 \ e^-$ transfer is required. $\Rightarrow 12 \ F$ of electricity $= 12 imes 96500 \ C$ $\begin{array}{c} \therefore 12 \times 96500 = It = 100 \times t \\ \therefore t = 12 \times 965 = \frac{12 \times 965}{3600} hr = 3.2 \ hr \end{array}$ Q10. (B) Structure of I_3^- is

[:::-:::]°

Total number of lone pairs = 9

Q11. (B) XM+NaOH \downarrow \downarrow $Al(OH)_3$ Alwhite gelatinous precipitate $X + NaOH \rightarrow \text{dissolve}$ $Al(OH)_3 + NaOH$ $NaAlO_2$ or $Na[Al(OH)_4]$ Sodium aluminate

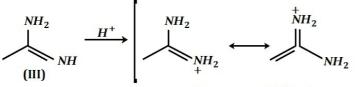
 $X \xrightarrow{-} \text{oxide}_{\Delta}$

 $Al(OH)_3 \longrightarrow Al_2O_3$ (used in chromatography as adsorbent)

•		
	Electronic Configuration	Bond Order
	$He_2^+:\sigma 1s^2\sigma^* 1s^1$	+1/2
	$H_2^-:\sigma 1s^2\sigma^* 1s^1$	+1/2
	$H_2^{2-}:\sigma 1s^2\sigma^* 1s^2$	0
	$He_2^{2+}:\sigma1s^2$	+1
	(B)	

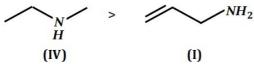
Q13.

Q12.

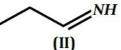


Resonance stabilized

The above compound forms resonance stabilized cation with H^+ and therefore is most acidic. (IV) is secondary amine and (I) is primary amine. Secondary amines are more basic than primary amines.

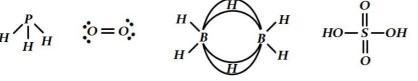


In (II), the nitrogen is sp^2 hybridized unlike other alkyl amine which are sp^3 hybridized. Hence, it is the least basic compound.



Q14. (B)

- In frenkel defect, the cation is dislocated from its normal site to an interstitial site.Q15. (B)
 - KCl is an ionic compound. PH_3 , O_2 , B_2H_6 and H_2SO_4 have covalent bonds.



Q17. (B)

Oxidising action in acidic medium $2Fe^{2+}(aq.) + 2H^+(aq.) + H_2O_2(aq.) \rightarrow 2Fe^{3+}(aq.) + 2H_2O(l)$ Reducing action in basic medium $2Fe^{3+}(aq.) + 2OH^- + H_2O_2(aq.) \rightarrow 2Fe^{2+}(aq.) + 2H_2O + O_2$

Q18. (D)

Q19. (C)

This is a wrong question in JEE 2018. The question asks about histamine. However, the pK_a given is of histidine. Also, pH of human blood is basic and this information is missing. Solution:

pH of human blood is 7.35

 pK_a of the two nitrogens in aromatic ring = 5.8

 pK_a of aliphatic nitrogen = 9.4

The two nitrogens in aromatic ring are equivalent as they show tautomerism.

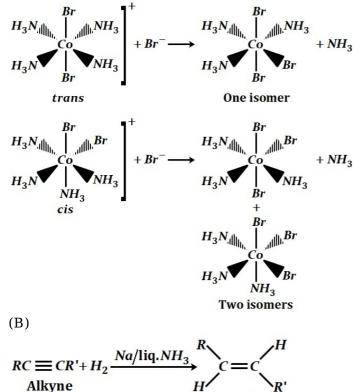
At pH 7.35 (human blood), aliphatic nitrogen can get protonated but not aromatic nitrogen. (B)

Q20. (B)

$$[3Ca_3(PO_4)_2 \cdot Ca(OH)_2] + F^- \rightarrow [3Ca_3(PO_4)_2 \cdot CaF_2]$$

Q21. (A)

Q22.



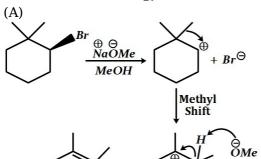
trans-alkene

Q23. (C)

(c) $C_{x}H_{y} + \frac{(2x + \frac{y}{2})}{2}O_{2} \rightarrow x CO_{2} + \frac{y}{2} H_{2}O$ $\Rightarrow x + \frac{y}{4} \text{ is the complete amount of oxygen } (O_{2}) \text{ required to burn } C_{x}Hy.$ $\therefore \text{ Since } C_{x}H_{y}O_{z} \text{ contains half as much as oxygen required.}$ $\Rightarrow 2z \text{ is the complete amount of oxygen required.}$ $\Rightarrow 2z = (x + \frac{y}{4}) \times 2 \begin{cases} \because \text{ Counting} \\ \text{ atoms of oxygen} \end{cases}$ $\Rightarrow z = x + \frac{y}{4}$ for option C, $C_{2}H_{4}O_{3}$ $\Rightarrow x = 2; \ y = 4; \ z = 3$ $\Rightarrow z = x + \frac{y}{4} = 2 + \frac{4}{4} = 2 + 1 = 3$ Hence, Option C is correct. (B) (B)

Q25.

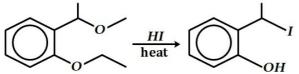
Q24.



Q26.

(D)

For exothermic reaction, $\Delta H = -ve$ $\therefore \Delta G = \Delta H - T\Delta S = -ve$ $\Delta G = -RT \ln K = -ve$ $\Rightarrow \ln K \propto \frac{1}{T}$ Only lines A and B shows that $\ln K$ increases with $\frac{1}{T}$ Q27. (C)



Intermediate is stable carbocation

Q28.

(B) $BaSO_4 \rightleftharpoons Ba^{2+} + SO_4^{2-}$ $K_{sp} = [Ba^{2+}] \cdot [SO_4^{2-}]$ Given, $Na_2SO_4=1~M,~V_{Na_2SO_4}=50~mL$ \Rightarrow mmoles of $Na_2SO_4 = 50 \times 1 = 50$ mmoles \Rightarrow mmoles of $SO_4^{2-} = 50$ mmoles. Final volume of solution = 500 mL \therefore concentration of $[SO_4^{2^-}] = \frac{50}{500} = 0.1 M$ ⇒ The conc. of $[Ba^{2+}]$ in the final 500 mL solution is $1 \times 10^{-9} M$. ∴ mmoles of $[Ba^{2+}] = 1 \times 10^{-9} \times 500$ mmoles \therefore final volume $= 500 \ mL$ & Vol of Na_2SO_4 added = 50~mL \therefore Initial volume = $500 - 50 = 450 \ mL$ \therefore concentration of Ba^{2+} initially $= \frac{1 \times 10^{-9} \times 500}{450} = 1.1 \times 10^{-9} M$ Q29. (D) Let rate of decomposition of acetaldehyde be $R = K [CH_3 CHO]^x$ when 5% reacted $R = 1 \ Torr/s$ $\Rightarrow R = K [P_o(1-0.05)]^x$ $1 = K[P_o \times 0.95]^x$ (1) when 33% reacted, R=0.5~Torr/s $\Rightarrow R = K [P_o(1-0.33)]^x$ $0.5 = K [P_o \times 0.67]^x$ (2) \Rightarrow Taking ratio of equations 1 & 2 we get $P_o imes 0.95$ $= \left(\frac{1}{P_o \times 0.67} \right)$ 0.5 $\Rightarrow 2 = (1.414)^x = (\sqrt{2})^x$ $\Rightarrow 2 = (2)^{x/2}$ $\Rightarrow \frac{x}{2} = 1$ $\Rightarrow x = 2$ \therefore The order of the reaction is 2. Q30. (C) $\Delta T_f = i \ k_f \cdot m$ For 1 modal aqueous solution, the compound with lowest value of i will have highest freezing point. $[Co(H_2O)_5Cl]Cl_2\cdot H_2O \Rightarrow i=3$ $[Co(H_2O)_4Cl_2]Cl\cdot 2H_2O\Rightarrow i=2$ $[Co(H_2O)_3\cdot Cl_3]\cdot 3H_2O \Rightarrow i=1$

 $[Co(H_2O)_6]Cl_3 \Rightarrow i = 4$

: Option C will have the highest freezing point.

Q31. (A) $\sin^2 x \cos^2 x \; dx$ $\int \frac{\sin x \cos x - \sin x}{(\sin^5 x + \cos^3 x + \sin^3 x \cos^2 x + \cos^5 x)^2}$ $\sin^2 x \cos^2 \, x \; dx$ $(\sin^2 x + \cos^2 x)^2 (\sin^2 x + \cos^3 x)^2$ $\int \frac{\sin^2 x \cos^2 x \, dx}{x \cos^2 x \, dx}$ $\int \frac{1}{(\sin^3 x + \cos^3 x)^2}$ Divide by $\cos^6 x$ $\int \frac{\sin^2 x}{\cos^2 x} \frac{1}{\cos^2 x} dx$ $(an^3 x{+}1)^2$ $\int \frac{(\tan^3 x+1)^2}{(1+\tan^3 x)^2}$ $\Rightarrow 1 + \tan^3 x = t$ $3 \tan^2 x \sec^2 x \, dx = dt$ $\Rightarrow \frac{1}{3} \frac{t^{-2}+1}{-2+1} + C$ $\Rightarrow \frac{1}{3} \left(\frac{-1}{t}\right) + C$ $\Rightarrow \frac{-1}{3(1+\tan^3 x)} + C$ (D) (D) $4x^2 - y^2 = 36$ Q32. Tangents at P & Q intersect at T(0,3)Chord of contact = PQ $4xx_1 - yy_1 = 36$ $4(0)x_1 - y(3) = 36$ -3y = 36y = -12 $\begin{array}{l} y = -12 \\ y = -12 \\ y = -12 \\ x = \pm 3\sqrt{5} \\ P(3\sqrt{5}, -12) \\ Q(-3\sqrt{5}, 12) \\ Area = \begin{vmatrix} 1 \\ 2 \\ -3\sqrt{5} \\ -12 \\ 1 \\ -3\sqrt{5} \\ -12 \\ 1 \\ 0 \\ 3 \\ 1 \end{vmatrix} \\ = \begin{vmatrix} \frac{1}{2} \times 90\sqrt{5} \end{vmatrix} = 45\sqrt{5} \end{array}$ T(0,3) Q33. (A) $y^2 = 16x$ P(16, 16) $\tan \theta = ?$ $\angle CPB = \theta$ $yy_1 = 8(x + x_1)$ 16y = 8(x + 16)2y = x + 16(equation of tangent) $MT = \frac{1}{2}$ MN = -2(y-16) = -2(x-16)y - 16 = -2x + 322x + y - 48 = 0(equation of normal) y = 0 x = -16A(-16,0) = P(16,16)y = 0x = 24 $B \equiv (+24,0)$ $C \equiv (4,0)$ $heta = ext{angle between } PC \& PB \\ m_{PC} = rac{16-0}{12} = rac{4}{3} \\ m_{PB} = rac{16-0}{-8} = -2 \\ ext{}$ $an heta = \left|rac{m_1 - m_2}{1 + m_1 m_2}
ight| = \left|rac{rac{4}{3} + 2}{1 + \left(rac{4}{3}
ight)(-2)}
ight|$ $=\left|\frac{\frac{10}{3}}{\frac{-5}{3}}\right|=2$ Q34. (D) $ec{u} = x(2\hat{i}+3\hat{j}-\hat{k})+y(\hat{j}+\hat{k})$ $ec{u}=\hat{i}\left(2x
ight)+\hat{j}\left(3x+y
ight)+\hat{k}(-x+y)$ $ec{u}-ec{b}=24$ $ec{u}\cdotec{a}=0$ $(2x\hat{i} + (3x + y)\hat{j} + (-x + y)\hat{k})\cdot(\hat{j} + \hat{k}) = 24$ 3x + y + (-x + y) = 242x + 2y = 24x+y=-12...(i) $(2x\hat{i}+(3x+y)\hat{j}+(-x+y)\hat{k})\cdot(2\hat{i}+3\hat{j}-\hat{k})=0$ 4x + 3(3x + y) - 1(-x + y) = 04x + 9x + 3y + x - y = 014x + 2y = 04x + y = 0y = -7x...(ii) Solving (i) & (ii) , we get -6x = 12x = -2y = 14 $ec{u}=2(-2)\hat{i}+(-6+14)\hat{j}+(+2+14)\hat{k}$ = -4i + 8j + 16k $|ec{u}|^2 = (\sqrt{16 + 64 + 256})^2$ = 336

Q35. (B)

$$a_{,\beta}^{,\beta} \in C$$

$$x^{\frac{1}{2}} - x + 1 = 0$$

$$a^{101} + \beta^{107} = ?$$

$$D = (-1)^{2} - 4(1)(1)$$

$$= 1 - 4 = -3$$

$$a_{,\beta} = \frac{+1\pm\sqrt{3i}}{2}$$

$$a = \frac{1}{2} + \frac{\sqrt{3i}}{2}$$

$$\beta = \frac{1}{2} - \frac{\sqrt{3i}}{2}$$

$$a^{2} = -\beta$$

$$a^{3} = \beta^{3} = -1$$

$$\Rightarrow a^{99} \cdot a^{2} + \beta^{105} \cdot \beta^{2}$$

$$\Rightarrow -a^{2} - \beta^{2}$$

$$\Rightarrow -(a^{2} + \beta^{2})$$

$$\Rightarrow -(\beta^{2} - \beta) \cdot (\beta^{2} - \beta) = -1$$

$$\Rightarrow -1(-1) = 1$$
Q36. (D)

$$g(x) = \cos x^{2} \quad f(x) = \sqrt{x}$$

$$a < \beta \quad 18x^{2} - 9\pi x + \pi^{2} = 0$$

$$18x^{2} - 6\pi x - 3\pi x + x^{2} = 0$$

$$6x(3x - \pi) - \pi(3x - \pi) = 0$$

$$x = \frac{\pi}{6}, \beta = \frac{\pi}{3}$$

$$y = (gof)(x) \quad y = \cos |x| = \cos x$$
Shaded region,
$$\int \frac{\pi}{5}^{\frac{\pi}{6}} \cos x \, dx$$

$$= (\sin x)^{\frac{\pi}{3}}$$

$$= \frac{\sqrt{3}}{2} - \frac{1}{2}$$
Q37. (C)

$$\left(x + \sqrt{x^{3} - 1}\right)^{5} + \left(x - \sqrt{x^{3} - 1}\right)^{5} \quad (x > 1)$$
Sum of coefficient of odd degrees

$$a = x \quad b = \sqrt{x^{3} - 1}$$

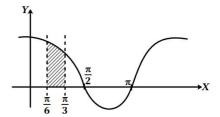
$$\Rightarrow (a + b)^{5} + (a - b)^{5}$$

$$\Rightarrow 2 (a^{5} + 10a^{3} (x^{3} - 1) + 5x(x^{3} - 1)^{2})$$

$$\Rightarrow 2 (x^{5} + 10x^{6} - 10^{3} + 5x(x^{6} + 1 - 2x^{3}))$$

$$\Rightarrow 2x^{5} + 20x^{6} - 20x^{3} + 10x^{7} + 10x - 20x^{4}$$

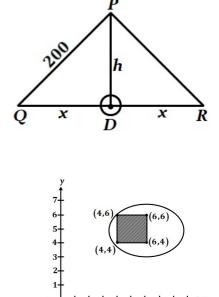
$$\Rightarrow 10x^{7} + 2x^{5} - 20x^{3} + 10x + 20x^{6} - 20x^{4}$$
Sum of coefficients = 10 + 2 - 20 + 10



Q38. (B) Given, $\sum_{k=0}^{12} a_{4k+1} = 416$ $\Rightarrow a_1 + a_5 + a_9 + a_{13} + \ldots + a_{49} = 416$ $\Rightarrow a_1 + (a_1 + 4d) + (a_1 + 8d) + \ldots + (a_1 + 48d) = 416$ $\Rightarrow S_{13} = 416$ $\Rightarrow \frac{13}{2}[a_1 + (a_1 + 48d)] = 416$ $\Rightarrow 2a_1 + 48d = rac{2 imes 416^{32}}{18} = 64$ $\Rightarrow a_1 + 24Ad = 32$ (1) Also, $a_9 + a_{43} = 66$ $\Rightarrow a_1 + 8d + a_1 + 42d = 66$ $\Rightarrow 2a_1 + 50d = 66$ $\Rightarrow a_1 + 25d = 33....(2)$ From eqn. (1) & (2), we get: $a_1 = 8$ and d = 1Now, $a_1^2 + a_2^2 + \dots + a_{17}^2 = 140 m$ $\sum_{i=1}^{17} a_1^2 = 140 \, m$ $\Rightarrow \sum_{i=1}^{17} (a_1 + (i-1) d)^2 = 140 m$ $\Rightarrow \sum_{i=1}^{17} [8 + (i-1)]^2 = 140 \ m$ $\Rightarrow \sum_{i=1}^{17} (7+i) = 140 \ m$ $\Rightarrow \sum_{i=1}^{17} 49 + i^2 + 14 \, i = 140 \, m$ $\begin{array}{l} \Rightarrow \ 49 \sum_{i=1}^{17} + \sum_{i=1}^{17} i^2 + 14 \sum_{i=1}^{17} i = 140 \ m \\ \Rightarrow \ 49 \ (17) + \frac{i(i+1)(2i+1)}{6} + \frac{14 \times 17 \times 18}{2} = 140 \ m \\ \Rightarrow \ 833 + \frac{17 \times \cancel{16}^3 \times 36}{\cancel{6}} + 2142 = 140 \ m \end{array}$ $\Rightarrow 4760 = 140 m$ $\Rightarrow m = rac{476\,\cancel{0}}{14\,\cancel{0}} = 34$

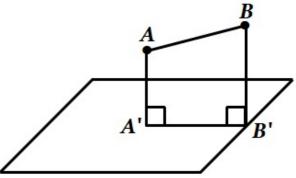
Q39. (B)
Given,
$$\sum_{i=1}^{9} (x_i - 5) = 9$$

 $\Rightarrow \sum_{i=1}^{9} -x_i - 5\sum_{i=1}^{9} 1 = 9$
 $\Rightarrow \sum_{i=1}^{9} x_i = 9 + 5(9)$
 $\Rightarrow \sum_{i=1}^{9} x_i = 54 \dots(1)$
Also, $\sum_{i=1}^{9} (x_i - 5)^2 = 45$
 $\Rightarrow \sum_{i=1}^{9} x_i^2 + 25 \sum_{i=1}^{9} 1 - 10 \sum_{i=1}^{9} x_i = 45$
 $\Rightarrow \sum_{i=1}^{9} x_i^2 + 25 \times 9 - 10(54) = 45$
 $\Rightarrow \sum_{i=1}^{9} x_i^2 = 45 + 540 - 225 = 360 \dots(2)$
Now, $\sigma^2 = \frac{1}{n} \sum x_i^2 - \left(\frac{\sum x_i}{n}\right)^2$
 $= \frac{1}{9} \sum_{i=1}^{9} x_i^2 - \left(\frac{1}{9} \sum_{i=1}^{9} x_i\right)^2$
 $= \frac{360}{9} - \left(\frac{54}{9}\right)^2$ [From eqn.(1) & (2)]
 $= 40 - (6)^2 = 4$
 \therefore Standard deviation, $\sigma = \sqrt{4} = 2$
Q40. (D)
 $\tan 30^\circ = \frac{h}{x} \tan 45^\circ = \frac{h}{PD}$
 $\frac{1}{\sqrt{3}} = \frac{h}{x} PD = h$
 $\angle PDQ = 90^\circ$
 $h^2 + x^2 = (200)^2$
 $h^2 = 50 \times 200$
 $h^2 = 50 \times 200 = 10000$
 $h = 100 m$.
Q41. (A)
We have, $|a - 5| < 1$
then, $-1 < a - 5 < 1$
 $or 4 < a < 6$
Now, $A = \{(a, b)\}$
Also, $4(a - 5)^2 + 9(b - 5)^2 \le 36$
 $\frac{(a - 5)^2}{9} + \frac{(b - 5)^2}{4} \le 1$
All the points in set A will lie inside the rectangle.
Therefore, $A \subset B$.



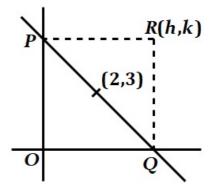
Q42. (D) 6 different Novels N_1, N_2, \ldots, N_6 3 different dictionaries $D_1 D_2 D_3$ 4 Novels 1 Dictionary N_1 N_2 D_1 N_5 N_4 5 D_1 4 6 3 $6 \times 5 \times 4 \times 3 \times 3 = 30 \times 4 \times 9 = 36 \times 30$ = 1080.Q43. (C) $h(x) = \frac{x^2 + \frac{1}{x^2}}{x - \frac{1}{x}} = \left(x - \frac{1}{x}\right) + \frac{2}{x - \frac{1}{x}}$ when $x - \frac{1}{x} < 0 \Rightarrow x - \frac{1}{x} + \frac{2}{x - \frac{1}{x}} \le -2\sqrt{2}$ so $-2\sqrt{2}$ will be local maximum value when $x - \frac{1}{x} > 0 \Rightarrow x - \frac{1}{x} + \frac{2}{x - \frac{1}{x}} \ge 2\sqrt{2}$ so $2\sqrt{2}$ will be local minimum value. Q44. (B) $\lim_{x o 0^+} x\left(\left[rac{1}{x}
ight] + \left[rac{2}{x}
ight] + \ldots + \left[rac{15}{x}
ight]
ight)$ $\lim_{x \to 0^+} x \left(\frac{1 + 2 + 3 + \ldots + 15}{x} \right) - \left(\left\{ \frac{1}{x} \right\} + \left\{ \frac{2}{x} \right\} + \ldots + \left\{ \frac{15}{x} \right\} \right)$ $egin{array}{l} x
ightarrow 0 \leq \left\{rac{r}{x}
ight\} < 1 \ 0 \leq x \left\{rac{r}{x}
ight\} < x \ \lim_{x
ightarrow 0^+} x \left(rac{1+2+3+\ldots+15}{x}
ight) = rac{15.16}{2} = 120. \end{array}$ $(\mathbf{C}) \\ \int\limits_{-\pi}^{\frac{\pi}{2}} \frac{\sin^2 x}{1+2^x} dx$ Q45. $I = \int_{-\pi}^{\pi \over 2} {\sin^2 x \over 1+2^x} dx$ (1) $f(x)^{rac{2}{\pi}} = f(a+b-x) \ I = \int\limits_{rac{-\pi}{2}}^{rac{\pi}{2}} rac{\sin^2 x}{1+2^{-x}} dx$ $I = \int_{-\pi}^{\pi} \left(\frac{\sin^2 x}{2^x + 1} \right)^{2x} dx$ (2) Add (1), & (2) $2I = \int\limits_{rac{\pi}{2}}^{rac{\pi}{2}} rac{\sin^2 x (2^x + 1)}{(2^x + 1)} dx$ $2I=\int\limits_{rac{-\pi}{2}}^{rac{7}{2}}rac{1-\cos 2x}{2}dx$ $2I = \left(rac{x}{2} - rac{\sin 2x}{4}
ight)^{rac{\pi}{2}}_{-rac{-\pi}{2}} \ 2I = \left(rac{\pi}{4} - 0
ight) - \left(rac{-\pi}{2} - 0
ight) \ 2I = rac{\pi}{4} imes 2 \Rightarrow I = rac{\pi}{4} \,.$

Q46. (A) Case I Event 1: Taking out a red ball. Event 2: Taking out a red ball after adding two red balls. $\Rightarrow \frac{4}{10} \times \frac{6}{12} = \frac{1}{5}$ Case II Event 1: Taking out a black ball. Event 2: Taking out a red ball after adding two black balls. $\Rightarrow \frac{6}{10} \times \frac{4}{12} = \frac{1}{5}$ Total probability = $\frac{1}{5}$ + $\frac{1}{5}$ = $\frac{2}{5}$. Q47. (C) Let a(5, -1, 4) and B(4, -1, 3)Plane: x + y + z = 7 $\hat{n} \Rightarrow ec{n} = \hat{i} + \hat{j} + \hat{k}$ DR's = (1,1,1)Eqn. of AA' $\Rightarrow \frac{x-5}{1} = \frac{y+1}{1} = \frac{z-4}{1}$ $egin{array}{l} =\lambda\ \Rightarrow x=\lambda+5, \ y=\lambda \end{array}$ $egin{array}{ll} -1, \ z=\lambda+4\ \Rightarrow A'\equiv (\lambda+5, \ \lambda-1, \end{array}$ $\lambda + 4)$ $\because A'$ lies on plane $\Rightarrow \lambda + 5 + \lambda - 1 + \lambda$ +4 = 7 $\Rightarrow A' \equiv \left(rac{14}{3}, \, rac{-4}{3}, rac{11}{3}
ight)$ Similarly, Eqn. of $BB' = \frac{x-4}{1} = \frac{y+1}{1}$ $\Rightarrow \frac{x-4}{1} = \frac{y+1}{1} = \frac{z-3}{1}$ $\therefore B'$ lies on the plane $\Rightarrow \mu + 4 + \mu - 1 + \mu$ +3=7 $=3\mu=+1\Rightarrow\mu=+rac{1}{3}$ $\Rightarrow B'\equiv\left(rac{13}{3},rac{-2}{3},rac{10}{3}
ight)$ $\Rightarrow A'B'$ $= \sqrt{\left(\frac{14}{3}, \frac{13}{3}\right)^2} + \left(\frac{-14}{3} + \frac{2}{3}\right)^2 + \left(\frac{11}{3} - \frac{10}{3}\right)^2 + \left(\frac{11}{3} - \frac{10}{3}\right)^2 + \left(\frac{11}{9} + \frac{4}{9} + \frac{1}{9}\right) = \sqrt{\frac{2}{3}} = \sqrt{\frac{2}{3}}$



Q50

$$\begin{array}{l} (4) \\ 8 \cos x \left[\cos \left(\frac{\pi}{6} + x\right) \cos \left(\frac{\pi}{6} - x\right)' - \frac{1}{2} \right] = 1 \\ 4 \cos x \left[\cos \frac{\pi}{3} + \cos 2x - 1 \right] = 1 \\ 4 \cos x \left[2\cos^2 x - 1 - \frac{1}{2} \right] = 1 \\ 2 \cos x \left[4 \cos^2 x - 3 \right] = 1 \\ 4 \cos^3 x - 3 \cos x = \frac{1}{2} \\ \cos 3x = \cos \frac{\pi}{3} \\ 3x = 2n\pi \pm \frac{\pi}{3} \\ n = 0, \ 3x \pm \frac{\pi}{3}, \ x = \pm \frac{\pi}{9}, \ x = \frac{\pi}{9} \\ n = 1, \ 3x = 2\pi \pm \frac{\pi}{3} \\ 3x = \frac{5\pi}{3}, \ \frac{7\pi}{3}, \ x = \frac{5\pi}{9}, \ \frac{7\pi}{9} \\ \text{Rest all solutions are not in } [0, \pi] \\ \text{Sum } = \frac{\pi}{9} + \frac{5\pi}{9} + \frac{7\pi}{9} = \frac{13\pi}{9} \\ \text{So } k = \frac{13}{9} \\ \text{So } k = \frac{13\pi}{9} \\ \text{So } k = \frac{2m-3}{2} \\ \text{So } k = \frac{13\pi}{9} \\ \text{So } k = \frac{3\pi}{2-h} \dots (1) \\ \text{So } k = 3 - 2m \\ \Rightarrow m = \frac{3-k}{2-h} \dots (2) \\ \Rightarrow \frac{11}{9} = \frac{3-k}{2} \\ \text{So } k = \frac{3-k}{2} \\ \text{So } k = \frac{3-k}{2} \\ \text{So } k = \frac{20}{1} \\ \text{So } k = 2n \\ \text{So } k = \frac{20}{1} \\ \text{So } k = 2n \\ \text{So }$$



Q51. (C) (Set -C) \Rightarrow Let $POI = (x_1, y_1)$ $\Rightarrow \text{Let } POI = (x_1, y_1)$ Slope of tangent on ellipse $= \frac{-9x_1}{by_1}$ Slope of tangent on paprabola $= \frac{3}{y_1}$ $\Rightarrow \text{ curves are at right angle, hence} \\ \Rightarrow \frac{-9x_1}{by_1} \times \frac{3}{y_1} = -1 \\ \Rightarrow by_1^2 = 27x_1 \\ \Rightarrow b(6x_1) = 27x_1 \\ \Rightarrow b = \frac{27}{6} = \frac{9}{2} \end{cases}$ Q52. (B) Orthocentre A(-3, 5) centroid B(3, 3) and $AB = \sqrt{40} = 2\sqrt{10}$ Centroid divides orthocentre and circumcentre in ratio 2:1 $\therefore AB: BC = 2:1$ Now $AB = \frac{2}{3}AC$ $AC = \frac{3}{2}AB = \frac{3}{2}(2\sqrt{10})$ $AC = 3\sqrt{10}$ Radius of circle with AC as diametre is $\frac{3}{2}\sqrt{10} = 3\sqrt{\frac{5}{2}}$. Q53. (D) $f\left(x
ight)=\left|x-\pi
ight|\left(e^{\left|x
ight|}-1
ight)\sin\left|x
ight|$ we check differentiability at $x = \pi$ & x = 0At x = 0 $R. \, H. \, D. = \lim_{h o 0^+} rac{|\pi + h - \pi| \left(e^{|\pi + h|} - 1
ight) \sin |\pi + h| - 0}{h} = 0 \ L. \, H. \, D. = \lim_{h o 0^+} rac{|\pi - h - \pi| \left(e^{|\pi - h|} - 1
ight) \sin |\pi - h| - 0}{-h} = 0$ $\therefore RHD = LHD$, so function is differentiable at $x = \pi$ At $x = \pi$ $R.\,H.\,D. = \lim_{h o 0^+} rac{|h-\pi| \left(e^{|h|} - 1
ight) \sin |h| - 0}{h} = 0 \ L.\,H.\,D = \lim_{h o 0^+} rac{|-h-\pi| \left(e^{|-h|} - 1
ight) \sin |-h| - 0}{-h} = 0$

 $\therefore RHD = LHD$, so function is differentiable at $x = \pi$ \therefore set S is empty set, ϕ . Q54. (B) | r - 4 |

$$\begin{vmatrix} \mathbf{x} & -4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \\ 0 & 0 & -4 \\ 0 & 0 & -4 \\ \end{vmatrix} = (A+Bx)(x-A)^2$$

$$\begin{vmatrix} -4 & 0 \\ 0 & -4 \\ 0 & 0 \\ 0 & -4 \\ \end{vmatrix} = A^3 \Rightarrow A = -4$$

$$\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \\ \end{vmatrix} = (Bx-4)(x+4)^2$$

$$\begin{vmatrix} x-4 & 2x & 2x \\ 2x & x-4 & 2x \\ 2x & 2x & x-4 \\ \end{vmatrix} = (Bx-4)(x+4)^2$$

$$\begin{vmatrix} 1-\frac{4}{x} & 2 & 2 \\ 2 & 1-\frac{4}{x} & 2 \\ 2 & 2 & 1-\frac{4}{x} \\ \end{vmatrix} = (B-\frac{4}{x})(1+\frac{4}{x})^2$$
Put $x \to \infty \Rightarrow \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix} = B \Rightarrow B = 5$
ordered pair (A, B) is $(-4, 5)$.
(D)

Q55.

p	q	$\sim p$	$\sim q$	p ee q	$\sim \! (p \! \lor \! q)$	$\sim p \wedge q$	$(p ee q) ee (\sim p \wedge q)$
0	0	1	1	0	1	0	1
0	1	1	0	1	0	1	1
1	0	0	1	1	0	0	0
1	1	0	0	1	0	0	0

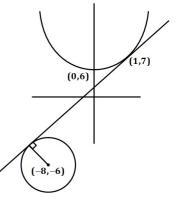
 $\overline{\sim (p \lor q)} \lor (\sim p \land q)$ is equivalent to $\sim p$. (A)

Q56.

()	
x + ky + 3z = 0	(1)
3x + ky - 2z = 0	(2)
2x+4y-3z=0	(3)
Eq(2) - Eq(1)	
2x-5z=0	(4)
from eq (3) & (4), we get	
$5z+4y-3z=0 \Rightarrow 2z+4y=0$	
$\Rightarrow rac{z}{y} = -2$	
also $\frac{5}{2} \cdot z \cdot \frac{z}{y^2} = \frac{5}{2} \frac{z^2}{y^2} = \frac{5}{2} (-2)^2 = 10$	

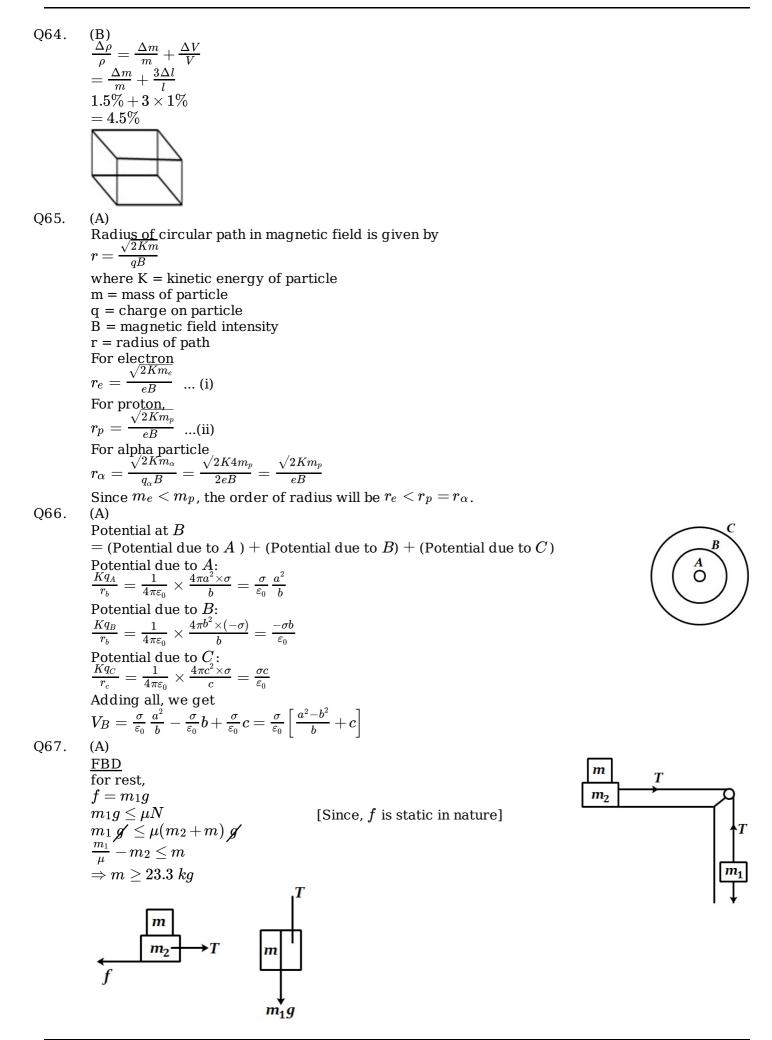
Q57. (B)

$$2 \sqrt{x} - 3 + \sqrt{x} (\sqrt{x} - 6) + 6 = 0$$
Case - I: $\sqrt{x} \ge 3$
 $\Rightarrow 2\sqrt{x} - b^{x} + x - 6\sqrt{x} + b^{x} = 0$ (1)
 $\Rightarrow x - 4\sqrt{x} = 0$
 $\Rightarrow \sqrt{x} (\sqrt{x} - 4) = 0$
 $\Rightarrow \sqrt{x} (\sqrt{x} - 4) = 0$
 $\Rightarrow \sqrt{x} = 0 \text{ or } \sqrt{x} = 4$
 $\Rightarrow x = 0 \text{ or } x = 16$
But $\sqrt{x} \ge 3 \Rightarrow x \ge 9$
Hence, $x = 16$ is accepted &
 $x = 0$ is rejected
Case · II: $0 \le \sqrt{x} < 3$
 $\Rightarrow -2\sqrt{x} + 6 + x - 6\sqrt{x} + 6 = 0$
 $\Rightarrow 64x + x^{x} + 12 = 0$
 $\Rightarrow 64x + x^{x} + 12 = 0$
 $\Rightarrow 64x + x^{x} + 144 = 0$
 $\Rightarrow x = 36, x = 4$
 $\Rightarrow \sqrt{x} = 6 \text{ or } \sqrt{x} = 2$
I: $x \ge 0$
 $\therefore \sqrt{x} = 6$ is rejected because $\sqrt{x} < 3$
 $\Rightarrow \sqrt{x} = 2 \Rightarrow x = 4$
 $\therefore S = \{4, 16\}$
So S contains only 2 elements
Option (B).
Q58. (C)
 $y = x^{2} + 6$
 $x^{2} + y^{2} + 16x + 12y + c = 0$
centre $(-8, -6)$
Eq of tangent to parabola at $(1, 7)$ is
 $T = 0$
 $\frac{y^{17}}{2} = x \cdot 1 + 6$
 $\Rightarrow y = 2x + 5$
 $\pi = \sqrt{100 - c} = \frac{1 - 16 + 6 + 5}{\sqrt{4 - 1}}$
 $\sqrt{100 - 6} = \frac{1 - 16 + 6 + 5}{\sqrt{4 + 1}}$
 $100 - c = \frac{25}{5} \Rightarrow c = 95$
Q59. (B)
 $\frac{4}{dx} + y \cdot \cot x = \frac{4x}{dx}, \quad x \in (0, \pi)$
 $I. F. = e^{\int \cot x \, dx}$
 $= e^{\int \frac{\cos x}{dx}} dx$
Sin $x \cdot y = \int y \sin x \frac{4x}{y^{2}x^{2}} + c$
 $at x = \frac{\pi}{6}$
 $x : y = 2x^{2} - \frac{\pi^{2}}{2}$
 $\sin x \cdot y = \int y \sin x \frac{4x}{y^{2}x^{2}} - c$
 $at x = \frac{\pi}{6}$
 $\frac{1}{2} \cdot y = 2x^{2} - \frac{\pi^{2}}{2}$
 $\sin x \cdot y = 2x^{2} - \frac{\pi^{2}}{2}$
 $\sin x \cdot y = 2x^{2} - \frac{\pi^{2}}{2}$

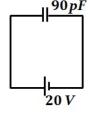


Q60. (A)

Plane passes through line of intersection of first two planes is $(2x-2y+3z-2)+\lambda(x-y+z+1)=0$ $x(\lambda+2)-y(2+\lambda)+z(\lambda+3)+(\lambda-2)=0$ (1)is having infinite number of solution with x+2y-z-3=0 and 3x-y+2z-1=0 then $(\lambda+2) = -(\lambda+2) = (\lambda+3)$ $\mathbf{2}$ -1|=01 1 3 Solving $\lambda=5$ 7x - 7y + 8z + 3 = 0perpendicular distance from (0, 0, 0) is $\frac{3}{\sqrt{162}} = \frac{1}{3\sqrt{2}}$. Q61. (D) In diffraction $dsin \ 30^\circ = \lambda$ $\lambda = \frac{d}{2}$ Young's fringe width [d' - separation between two slits] $\beta = \frac{\lambda \times D}{d'}$ $10^{-2} = \frac{d}{2} \times \frac{50 \times 10^{-2}}{d'}$ $10^{-2} = \frac{10^{-6} \times 50 \times 10^{-2}}{10^{-2}}$ $10^{-2} = \frac{10^{-6} \times 50 \times 10^{-2}}{2 \times d'}$ $d' = 25 \mu m$ Q62. (D) From Rydberg's formula From Rydberg's form $\frac{1}{\Lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$ From $E = \frac{hc}{\Lambda} = \frac{-13.6}{n^2}$ $\Rightarrow \frac{1}{\Lambda} = \frac{c}{n^2}$ (1)(2)From (1) & (2) $\begin{array}{l} \frac{1}{\Lambda} = c \left[\frac{1}{\lambda_g} - \frac{1}{\lambda_n} \right] \\ \Rightarrow \Lambda = \frac{c\lambda_n \lambda_g (\lambda_n + \lambda_g)}{\lambda_n^2 - \lambda_g^2} \\ = \frac{c\lambda_n \lambda_g (\lambda_n + \lambda_g)}{\lambda_n^2} \end{array}$ $[\lambda_n >> \lambda_g]$ $=rac{c\lambda_n^2\lambda_g}{\lambda_n^2}+rac{c\lambda_n\lambda_g^2}{\lambda_n^2}$ $\Lambda \sim \overset{``}{A} + rac{B}{\lambda^2}$ Q63. (B) **200 Ω** 3VSilicon diode is in forward bias. Hence, across diode potential barrier $\Delta V = 0.7 V \ \therefore I = rac{V - \Delta V}{R} = rac{3 - 0.7}{200} \ = rac{2.3}{200} = 11.5 \ mA$



Q68. (B) $U = \frac{-k}{2r^2}$ $F = \frac{-\partial u}{\partial x} = \frac{-k}{r^3}$ Now, since particle is under central action force. $\Rightarrow \frac{-k}{r^3} = \frac{mv}{r}$ [Note (-) sign indicates central acting] $\Rightarrow \left|\frac{1}{2}mv^2\right| = \frac{k}{2r^2}$ Now, Total Energy $= u ig|_a + k ig|_a \ = rac{-k}{2a^2} + rac{k}{2a^2}$ = 0Q69. (D) $\sigma_i = \sigma \left(1 - \frac{1}{k}\right)$ $\Rightarrow \sigma_i = \sigma \left(1 - \frac{1}{\left(\frac{5}{3}\right)} \right)$ $\Rightarrow \sigma_i = \frac{2}{5}\sigma$ $\Rightarrow Q_i = \frac{2}{5}(A) \times (E\varepsilon_0) \times \left(\frac{d}{d}\right)$ $=rac{2}{5} imes C imes V \ = \left(rac{2}{5} imes 90 imes 20 imes rac{5}{3}
ight) pC$ $= 1200 \ pC$ $= 1.2 \ n \ C$ Q70. (A) For silver atom, no. of atoms in 1 mole $= N_A$ We know that $\sqrt{rac{k}{\mu}} = 2\pi f$ [where μ is reduced mass] $\stackrel{{\bf v}}{\Rightarrow} \frac{k}{\mu} = 4\pi^2 f^2$ $egin{aligned} &\Rightarrow k = 4\pi^2 f^2 \mu \ &= 4\pi^2 f^2 rac{m}{N_A} \ &= 4\pi^2 imes (10^{12})^2 imes rac{0.108}{6.02 imes 10^{23}} \end{aligned}$ $= 7.1 \ N/m$ Q71. (D)



A neutron and a deuterium are of comparable masses, and under elastic collision conditions, analytically we can say, that the deuterium will gain a final speed comparable to neutron's initial speed.

This in energy terms for the neutron can be stated as a high amount of loss as it almost transfers all of its energy to deuterium.

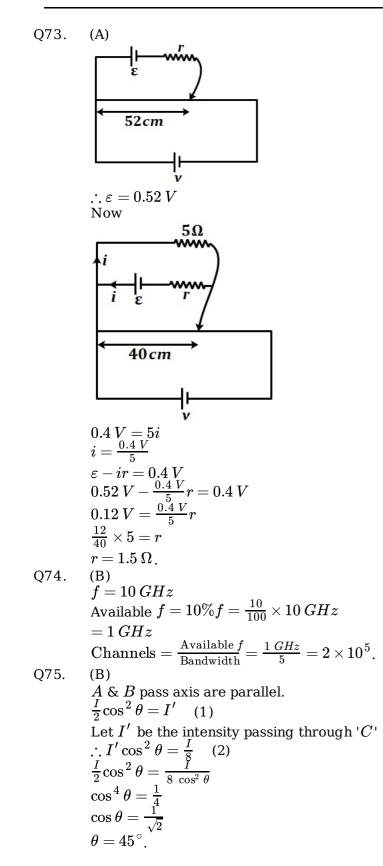
However, with carbon nucleus (24 times the mass of neutron), the neutron will bounce back will almost the same speed, resulting in very small loss or small transference of its kinetic energy.

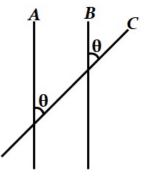
Option D only satisfies the above logic.

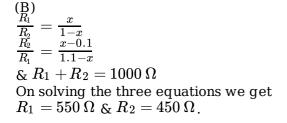
Q72.

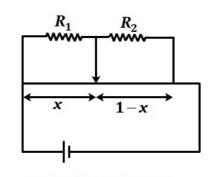
(B)

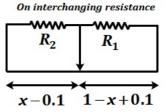
 $egin{aligned} m_1 &= IA \ M_2 &= 2m = IA' \ A_2 &= 2A_1 \ \therefore r_2 &= \sqrt{2}r_1 \ B_1 &= rac{\mu_0 I}{2r_1} \ B_2 &= rac{\mu_0 I}{2(\sqrt{2}r_1)} \ rac{B_1}{B_2} &= \sqrt{2} \end{aligned}$











Q77. (D)

Q76.

Using Superposition Principle $I_{\text{entire disc}} = I_{\text{smaller part}} + I_{\text{remaining part}}$

$$\frac{9MR^2}{2} = \left[\frac{M\left(\frac{r}{3}\right)^2}{2} + M\left(\frac{2R}{3}\right)^2\right] + I_{\text{remaining part}}$$
$$\frac{9MR^2}{2} = I_{\text{remaining part}} + \frac{9MR^2}{12} \text{ [Mass of smaller]}$$

 $\frac{9MR^2}{2} = I_{\text{remaining part}} + \frac{9MR^2}{18} \text{ [Mass of smaller position will be } \frac{9M}{9} \text{, since area of smaller disc is } \frac{1}{9} \text{ times of entire disc.]}$

$$rac{9MR^2}{2} = I_{
m remaining part} + rac{MR^2}{2}$$

 $I = 4 MR^2$
(A)

$$\begin{array}{c} \mathbf{v_{0}} & \mathbf{v} = \mathbf{0} \\ \mathbf{O} \longrightarrow \mathbf{O} \\ \mathbf{O} \longrightarrow \mathbf{O} \\ \mathbf{O} & \text{Finally} \\ \mathbf{O} \longrightarrow \mathbf{O} \\ \mathbf{O} & \text{Finally} \\ \mathbf{O} \longrightarrow \mathbf{O} \\ \mathbf{V}_{2} & \mathbf{V}_{1} \\ \mathbf{O} \longrightarrow \mathbf{O} \\ \mathbf{V}_{2} & \mathbf{V}_{1} \\ \mathbf{V}_{0} = v_{1} + v_{2} \\ \text{And } KE_{f} = \frac{150}{100} KE_{i} \\ \frac{1}{2}mv_{1}^{2} + \frac{1}{2}mv_{2}^{2} = \frac{3}{2} \left(\frac{1}{2}mv_{0}^{2}\right) \\ \text{Putting } v_{1} = v_{0} - v_{2} \\ v_{2} = \frac{v_{0}}{2} - \frac{v_{0}}{\sqrt{2}} \& v_{1} = \frac{v_{0}}{2} + \frac{v_{0}}{\sqrt{2}} \\ \therefore \text{ Relative velocity} = \frac{v_{0}}{\sqrt{2}} - \left(\frac{-v_{0}}{\sqrt{2}}\right) = \sqrt{2} v_{0}. \end{array}$$

Q79. (B)

Let air be referred to as medium 1 and the medium as medium 2. $k = \frac{2\pi\nu}{c} = \frac{2\pi}{\lambda}$ where $k_2 = 2k = \frac{2\pi}{\lambda_2}$ $\therefore \lambda_2 = \frac{\lambda}{2} \Rightarrow v_2 = \frac{c}{2}$ $\therefore n_2 \text{ (refractive index of medium 2)}$ $n_2 = \frac{c}{v_2} = 2$ $\frac{n_2}{v_2} = \frac{1}{\sqrt{\frac{\mu_2 \varepsilon_2}{\mu_2}}}$

$$egin{aligned} \overline{n_1} & -\sqrt{\mu_1 arepsilon_1} \ \overline{n_1} & -\sqrt{rac{arepsilon_2}{arepsilon_2}} \ 2 & = \sqrt{rac{arepsilon_2}{arepsilon_1}} \left(rac{\mu_2}{\mu_1} = 1, \because ext{medium 2 is non-magnetic}
ight) \ \therefore rac{arepsilon_1}{arepsilon_2} & = rac{1}{4}. \end{aligned}$$

Q80.

(D)

Quality factor = $\frac{\omega_o L}{R}$

Q81. (A)

$$x = -(l-a)^{2} + b$$

$$y = -2(l-a)$$

$$\frac{d_{R}}{d_{R}} = \frac{\frac{2}{N}}{d_{R}}$$

$$\frac{-2}{-2(l-a)} = \frac{1}{l}$$
A) is incorrect because from $t = 0$ to $t = a$, position and distance should be same.
Distance

$$\frac{1}{2(l-a)} = \frac{1}{l}$$

$$\frac{-2}{2(l-a)} = \frac{1}{l}$$

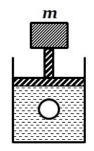
$$\frac{-2}{2(l-a)} = \frac{1}{l}$$

$$\frac{1}{2(l-a)} = \frac{1}{l}$$

$$\frac{1}{2(l-$$

Q86. (B) $n=2,\,V,\,T=27^{\,\circ}C=300\,K$ n = 2, v, T = 21 C = 500 K $n_f = 2, V_f = 2V, T_f = ?$ $T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$ $\Rightarrow T_2 = \frac{300 \times V^{\gamma - 1}}{(2V)^{\gamma - 1}} = \frac{300}{2^{\frac{5}{3} - 1}} = \frac{300}{2^{\left(\frac{2}{3}\right)}}$ = 189 K $\Delta U = n C_V \Delta T = 2 \times \frac{3R}{2} \times (189 - 300) = -2.7 \, kJ$. $\begin{array}{c} \text{(B)} \\ \Delta P = \frac{mg}{2} \end{array}$ Q87.

$$\begin{aligned} \frac{\Delta T}{V} &= \left| \frac{a - \Delta P}{B} \right| = \frac{mg}{aB} \\ \frac{\Delta V}{V} &= 3 \frac{\Delta r}{r} \Rightarrow \frac{\Delta r}{r} = \frac{mg}{3 \ aB} = \frac{mg}{3 \ aK}. \end{aligned}$$



Q88. (D)
$$\rho =$$

$$\begin{array}{l} (D) & (D) \\ \rho = 2.7 \times 10^{3} \, kg/m^{3} \\ Y = 9.27 \times 10^{10} \, Pa \\ & \frac{\lambda}{2} = L \\ & \frac{\lambda}{2} = 60 \, cm \Rightarrow \lambda = 120 \, cm \\ & \text{Velocity } V = \sqrt{\frac{Y}{\rho}} = \sqrt{\frac{9.27 \times 10^{10}}{2.7 \times 10^{3}}} = 5.86 \times 10^{3} \, m/s \\ & \text{frequency } f = \frac{V}{\lambda} = \frac{5.84 \times 10^{3}}{1.2} = 4882 \, Hz \,. \end{array}$$

$$\begin{array}{l} (D) \\ & \text{Pressure} = \frac{\text{Force}}{\text{Area}} = \frac{\left(\frac{\Delta P}{\Delta f}\right)}{\text{Area}} = \frac{\left(\frac{2 \, mv \, \cos \theta}{1 \, \sec 0}\right)}{\text{Area}} \\ & = \frac{2 \times 3.32 \times 10^{-27} \times 10^{3} \times 10^{3} \times \cos 45^{5}}{2 \times 10^{3} \, N/m^{2}} \,. \end{array}$$

$$\begin{array}{ll} \text{O0.} & (\text{C}) \\ & I = I_{\text{CM}} + MR^2 \\ & I_{\text{CM}} = I_0 = \frac{MR^2}{2} + \left[\frac{MR^2}{2} + M\left(4R^2\right)\right] \times 6 = \frac{55}{2}MR^2 \\ & I_P = \frac{55}{2}MR^2 + (7M)\left((3R)^2\right) = \frac{181\ MR^2}{2} \end{array}$$